国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于松鼠覓食算法優(yōu)化LSSVM的泥石流預測
DOI:
CSTR:
作者:
作者單位:

西安思源學(xué)院 理工學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

陜西省教育廳科研計劃資助項目(2022JK0515) 陜西省自然科學(xué)基礎研究計劃項目(2023-JC-YB-464)


Prediction of Debris Flow Based on Squirrel Foraging Algorithm Optimized LSSVM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對山區村鎮泥石流影響因素多元復雜、LSSVM算法參數隨機導致的精度不佳及陷入局部最優(yōu)問(wèn)題,采用核主成分分析KPCA降維、SSA算法參數尋優(yōu)的方法建立LSSVM泥石流災害預測模型。以山陽(yáng)縣中村鎮泥石流為例,分析泥石流全域地形地貌成災因子,對數據預處理清洗規范,利用KPCA主成分貢獻率選取出6個(gè)成災因子作為L(cháng)SSVM算法的輸入數據,泥石流發(fā)生概率為輸出,建立泥石流預報模型,并用SSA算法進(jìn)行模型參數的優(yōu)化。將SSA尋優(yōu)后的LSSVM預測結果與GA、GC參數尋優(yōu)模型預測結果比對,結果表明SSA-LSSVM準確率達到93.2%,相比其他模型提高[4.8%-1.4%],且SSA算法優(yōu)化的LSSVM模型的MAE、MSE和RMSE最小且接近于零,同時(shí)從泥石流發(fā)生的預報等級維度進(jìn)行結果比對分析,結果進(jìn)一步說(shuō)明模型預測的精度及穩健性。本研究說(shuō)明SSA-LSSVM算法可用于泥石流災害發(fā)生概率的預測,為此類(lèi)災害預測提供了科學(xué)依據。

    Abstract:

    In order to solve the problem of poor accuracy and local optimal caused by multiple and complex influencing factors of debris flow in mountainous villages and towns and the random parameters of LSSVM algorithm, the LSSVM debris flow disaster prediction model was established by KPCA dimension reduction and SSA algorithm parameter optimization methods. Mudslides son duong district of villages and towns, for example, global topography by factor analysis of debris flow, wash specification for data preprocessing, 6 by using KPCA principal component contribution rate to select the factors as the input data of LSSVM algorithm, debris flow occurrence probability as output, debris flow forecast model is established, and model parameters are optimized with the SSA algorithm. By comparing the prediction results of LSSVM optimized by SSA with those of GA and GC parameter optimization models, the results show that the accuracy of SSA-LSSVM reaches 93.2%, which is higher than that of other models [4.8%-1.4%]. Moreover, MAE, MSE and RMSE of LSSVM optimized by SSA algorithm are minimum and close to zero. At the same time, the results are compared and analyzed from the prediction grade dimension of debris flow occurrence, and the results further illustrate the accuracy and robustness of the model prediction. This study shows that SSA-LSSVM algorithm can be used to predict the probability of debris flow disasters, and provides a scientific basis for the prediction of such disasters.

    參考文獻
    相似文獻
    引證文獻
引用本文

李璐,徐根祺,李麗敏,馬媛,竇婉婷,張西霞.基于松鼠覓食算法優(yōu)化LSSVM的泥石流預測計算機測量與控制[J].,2023,31(8):238-244.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-03-06
  • 最后修改日期:2023-03-21
  • 錄用日期:2023-03-27
  • 在線(xiàn)發(fā)布日期: 2023-08-22
  • 出版日期:
文章二維碼
湖南省| 北京市| 惠东县| 怀来县| 吉首市| 习水县| 收藏| 宁德市| 祥云县| 东方市| 巴南区| 乐都县| 土默特左旗| 北海市| 柞水县| 聊城市| 高青县| 特克斯县| 潼南县| 宜春市| 江城| 密云县| 泰顺县| 瓦房店市| 湘潭县| 九江县| 夏河县| 甘泉县| 叶城县| 紫金县| 北安市| 拜城县| 芜湖市| 廉江市| 南投市| 怀集县| 广宁县| 闽清县| 金山区| 佛冈县| 丹阳市|