国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

VANET隨機部署環(huán)境下基于改進(jìn)型共享最近鄰密度峰聚類(lèi)的快速分簇算法
DOI:
CSTR:
作者:
作者單位:

廣東工業(yè)大學(xué)

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:


Fast Clustering Algorithm Using Improved Shared-Nearest-Neighbor-based Density Peaks Clustering in Random Deployment Environment of VANET
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對車(chē)輛高速移動(dòng)場(chǎng)景下,網(wǎng)絡(luò )拓撲變化過(guò)大導致網(wǎng)絡(luò )分簇結果不穩定的問(wèn)題,提出一種基于改進(jìn)型共享最近鄰密度峰聚類(lèi)的快速成簇算法SNNCA(Shared Nearest Neighbor Clustering Algorithm)。通過(guò)綜合考慮節點(diǎn)的鏈路生存周期和移動(dòng)相似性,提出一種全新的節點(diǎn)連接穩定程度評估指標,并將該評估指標應用于節點(diǎn)共享最近鄰的計算過(guò)程,以組織網(wǎng)絡(luò )節點(diǎn)為劃分合理的多跳簇結構。為適應網(wǎng)絡(luò )環(huán)境的動(dòng)態(tài)變化,提出一種簇維護策略,其中每個(gè)層級的簇成員承擔著(zhù)維護下一層級簇成員的任務(wù),該策略能夠對簇成員進(jìn)行批量分離或合并,從而實(shí)現了算法的分布式快速收斂。根據隨機部署場(chǎng)景中進(jìn)行的仿真實(shí)驗結果顯示,相比其他較新算法,SNNCA算法降低了74%的簇數量,并且簇成員的平均存活時(shí)間增加了近1倍,表現出更好的網(wǎng)絡(luò )穩定性和健壯性。

    Abstract:

    For the issue of unstable network clustering results due to excessive network topology changes in high-speed vehicle movement scenarios, a fast clustering algorithm called SNNCA (Shared Nearest Neighbor Clustering Algorithm) using improved shared-nearest-neighbor-based density peaks clustering is proposed. By comprehensively considering the node's link survival period and movement similarity, a novel node connection stability evaluation metric is proposed. The metric is utilized in the shared nearest neighbor calculation process of the node to organize the network nodes into reasonable multi-hop cluster structure. To adapt to the dynamic changes of the network environment, a cluster maintenance strategy is introduced, where each level of cluster members takes on the task of maintaining the next level of cluster members, and this strategy can perform batch separation or merging of cluster members, achieving distributed and rapid convergence of the algorithm. According to the simulation results of the random deployment scenario, SNNCA algorithm reduces 74% of cluster numbers compared to other newer algorithms, and the average survival time of cluster members increases by nearly 1 time, demonstrating better network stability and robustness.

    參考文獻
    相似文獻
    引證文獻
引用本文

陳靖宇,徐志林. VANET隨機部署環(huán)境下基于改進(jìn)型共享最近鄰密度峰聚類(lèi)的快速分簇算法計算機測量與控制[J].,2023,31(9):174-182.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-03-06
  • 最后修改日期:2023-03-22
  • 錄用日期:2023-03-27
  • 在線(xiàn)發(fā)布日期: 2023-09-18
  • 出版日期:
文章二維碼
韶山市| 邵阳县| 阳春市| 马公市| 张北县| 阳高县| 扶余县| 舒兰市| 山东省| 曲阜市| 高清| 汉沽区| 安新县| 新乐市| 渭源县| 天全县| 定远县| 柯坪县| 江北区| 安吉县| 中牟县| 阳西县| 澄迈县| 威宁| 漯河市| 岳阳县| 湖北省| 易门县| 鲁山县| 太仆寺旗| 永仁县| 汾西县| 江北区| 栖霞市| 大悟县| 共和县| 乐东| 略阳县| 垣曲县| 潍坊市| 远安县|