国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于輕量級金字塔網(wǎng)絡(luò )的種子分選方法研究
DOI:
CSTR:
作者:
作者單位:

中原工學(xué)院 電子信息學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP391.41

基金項目:

國家自然科學(xué)基金項目(面上項目,重點(diǎn)項目,重大項目)


Research On Seed Sorting Method Based On Lightweight Pyramidal Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對目前卷積神經(jīng)網(wǎng)絡(luò )種子分選方法存在識別精度不高、模型參數量大、推理速度慢且難于部署等問(wèn)題,提出了基于輕量級金字塔空洞卷積網(wǎng)絡(luò )的種子分選方法;該網(wǎng)絡(luò )提出了殘差空間金字塔模塊,利用不同擴張率的空洞卷積擴大感受野,更有效的提取多尺度特征;再結合深度可分離卷積技術(shù)減少模型參數量和計算復雜度;在網(wǎng)絡(luò )結構中引入輕量級注意力機制模塊,利用局部跨通道交互方式關(guān)注重要的信息,提高種子關(guān)鍵特征提取能力;實(shí)驗結果表明,提出網(wǎng)絡(luò )參數量?jì)H為0.13M,在玉米和紅蕓豆數據集上準確率高達96.00%和97.38%,在NVIDIA Quadro板卡上識別單張圖片時(shí)間僅為4.51ms,均優(yōu)于主流輕量級網(wǎng)絡(luò )MobileNetv2、Shufflenetv2 和PPLC-Net等,可以滿(mǎn)足工業(yè)現場(chǎng)實(shí)時(shí)識別的要求。

    Abstract:

    Abstract: To address the problems of low recognition accuracy, large number of model parameters, slow inference speed and difficult deployment of the current convolutional neural network seed sorting method, a seed sorting method based on lightweight pyramidal dilated convolutional network is proposed. This paper proposes the residual spatial pyramid module, which expands the perceptual field by using the convolution of dilated with different expansion rates, so as to effectively extract multi-scale features. Deeply separable convolution techniques are then used to reduce the number of model parameters and the computational complexity. A lightweight attention mechanism module is introduced into the network structure to improve seed key feature extraction by focusing on important information using local cross-channel interactions. The experimental results show that the proposed network has only 0.13M parametric number, 96.00% and 97.38% accuracy on corn dataset and red kidney bean dataset, and 4.51ms average time to recognize a single image on NVIDIA Quadro boards, which are better than the mainstream lightweight networks MobileNetv2, Shufflenetv2 and PPLC- Net, etc., which can meet the requirements of real-time recognition in industrial sites.

    參考文獻
    相似文獻
    引證文獻
引用本文

李衛杰,桑肖婷,李環(huán)宇,魏平俊,李驍.基于輕量級金字塔網(wǎng)絡(luò )的種子分選方法研究計算機測量與控制[J].,2024,32(3):239-246.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-03-06
  • 最后修改日期:2023-05-09
  • 錄用日期:2023-05-10
  • 在線(xiàn)發(fā)布日期: 2024-04-01
  • 出版日期:
文章二維碼
乌鲁木齐县| 禄丰县| 牡丹江市| 交城县| 洛浦县| 张家界市| 南昌县| 平原县| 沭阳县| 阳信县| 聂荣县| 天柱县| 来宾市| 玉山县| 罗甸县| 古田县| 和硕县| 宿州市| 凌云县| 昔阳县| 浪卡子县| 塘沽区| 巴里| 肥西县| 河曲县| 合水县| 攀枝花市| 高青县| 乐都县| 辉县市| 思茅市| 万全县| 通城县| 托克逊县| 信丰县| 孟津县| 上思县| 吴忠市| 黔西县| 高碑店市| 罗源县|