国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于U-P-Net的手機玻璃屏幕缺陷分割
DOI:
CSTR:
作者:
作者單位:

1.廣東工業(yè)大學(xué)大學(xué) 計算機學(xué)院;2.廣東工業(yè)大學(xué)大學(xué) 自動(dòng)化學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP18

基金項目:

國家重點(diǎn)研發(fā)計劃項目(2020AAA0108304),國家自然科學(xué)(62073088,U1911401)。


Defect segmentation of mobile phone screen based on U-P-Net
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    隨著(zhù)科技的發(fā)展及電子設備的普及,玻璃屏幕質(zhì)量成為電子設備和其他產(chǎn)品的重要考慮因素;而玻璃外觀(guān)缺陷檢測是玻璃質(zhì)量檢測中最重要的環(huán)節,這也是保證產(chǎn)出高品質(zhì)、高性能的玻璃產(chǎn)品的關(guān)鍵環(huán)節;目前玻璃表面缺陷檢測方法存在無(wú)目標訓練圖像資源消耗、檢測精度較低、復雜特征信息難以提取等問(wèn)題;因此,為了解決上述問(wèn)題,提出了一種基于U-pyramid pooling module-Net(U-P-Net)的手機玻璃屏幕缺陷分割模型;采用超像素預處理,有效地降低了原始圖像的復雜度;采用ResNet50作為分類(lèi)網(wǎng)絡(luò ),減少無(wú)目標訓練圖像造成的資源浪費,提高訓練效率;U-P-Net被提出,有效地聚合了不同區域的上下文信息,提高了獲取全局信息的能力;實(shí)驗結果表明,所設計的基于U-P-Net玻璃缺陷分割算法分割精度明顯優(yōu)于其它傳統卷積神經(jīng)網(wǎng)絡(luò )分割方法,證明了該框架在移動(dòng)屏幕數據集上的有效性.

    Abstract:

    With the development of science and technology and the popularity of electronic equipment, glass screen quality has become an important consideration for electronic equipment and other products; The detection of glass appearance defects is the most important link in glass quality detection, which is also the key link to ensure the production of high quality and high-performance glass products; At present, there are some problems in the detection methods of glass surface defects, such as resource consumption of target-free training image, low detection accuracy and difficult extraction of complex feature information. Therefore, to solve the above problems, a defect segmentation model of mobile phone glass screens based on U-pyramid pooling module-Net(U-P-Net) is proposed. Superpixel preprocessing is used to reduce the complexity of the original image effectively. ResNet50 was used as a classification network to reduce the waste of resources caused by training images without targets and improve training efficiency. U-P-Net is proposed, which aggregates the context information of different regions effectively and improves the ability to obtain global information. Experimental results show that the proposed U-P-Net glass defect segmentation algorithm is significantly superior to other traditional convolutional neural network segmentation methods, which proves the effectiveness of the framework on mobile screen data sets.

    參考文獻
    相似文獻
    引證文獻
引用本文

李墨,陳志豪,吳宗澤.基于U-P-Net的手機玻璃屏幕缺陷分割計算機測量與控制[J].,2023,31(8):231-237.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-03-02
  • 最后修改日期:2023-03-14
  • 錄用日期:2023-03-15
  • 在線(xiàn)發(fā)布日期: 2023-08-22
  • 出版日期:
文章二維碼
奈曼旗| 巨野县| 城固县| 深州市| 驻马店市| 莎车县| 高碑店市| 平乐县| 虞城县| 新泰市| 海阳市| 宜黄县| 济源市| 甘南县| 紫云| 福泉市| 徐闻县| 开封市| 惠州市| 德令哈市| 大名县| 晋江市| 庐江县| 通许县| 遵义市| 尚义县| 元氏县| 荔波县| 宽甸| 无为县| 西乌珠穆沁旗| 普陀区| 石柱| 五大连池市| 时尚| 永城市| 华亭县| 昌黎县| 内黄县| 临江市| 南丹县|