国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于YOLOv5和生成對抗網(wǎng)絡(luò )的塑料標簽缺陷檢測
DOI:
CSTR:
作者:
作者單位:

江南大學(xué) 理學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP391

基金項目:

中國博士后科學(xué)基金第70批面上資助一等(2021M700039);國家自然科學(xué)基金青年基金(11904135)


Industrial Defect Detection of Plastic Labels Based on YOLOv5 and Generative Adversarial Networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    塑料標簽物的缺陷檢測與識別是工業(yè)過(guò)程控制和質(zhì)量控制的關(guān)鍵;為了克服現有塑料標簽缺陷檢測方法的局限性,使用了單階段目標檢測模型YOLOv5對其瑕疵進(jìn)行實(shí)時(shí)檢測與分類(lèi);此外,為解決由于樣本缺陷數量不足造成的模型識別準確率低等問(wèn)題,采用了一種基于Defect-GAN的生成對抗網(wǎng)絡(luò )對小樣本進(jìn)行數據增強和擴增;該方法通過(guò)模擬缺陷生成和缺陷圖像重建的過(guò)程,可以高效合成大量具有高保真度和多樣性的缺陷樣本,尤其適用于形狀不規則、分布隨機且尺寸不同的瑕疵生成;實(shí)驗結果表明,通過(guò)使用擴增數據集訓練目標檢測器,并對網(wǎng)絡(luò )的超參數進(jìn)行優(yōu)化,可以顯著(zhù)提高目標檢測器的準確率和精度,其平均精度mAP可達99.5%;此外,為了模擬該方法在實(shí)際生產(chǎn)中的應用場(chǎng)景,設計并定制了一臺半自動(dòng)的圖像采集機械平臺用于采集圓柱樣品表面的印刷標簽,以及一個(gè)自主開(kāi)發(fā)的圖像處理和統計分析軟件用于樣本采集、圖像處理及統計分析;該方法和平臺可以很容易地推廣并應用到其他工業(yè)質(zhì)量控制和缺陷檢測系統中。

    Abstract:

    The defect detection and identification of plastic label is the key of industrial process control and quality control. In order to overcome the limitations of the plastic label defect detection methods, the single-stage target detection model YOLOv5 was used to detect and classify the defects in real time. In addition, in order to solve the problem of low model recognition accuracy due to insufficient number of sample defects, a Defect-GAN based generative adversarial networks is used for data augmentation and amplifying the data of small samples. By simulating the process of defect generation and defect image reconstruction, the method can efficiently synthesize a large number of defect samples with high fidelity and diversity. It is especially suitable for defect generation with irregular shape, random distribution and different size. The experimental results show that the accuracy of the detector can be significantly improved by using the amplified data set to train the detector and optimizing the network hyperparameters, and the mean Average Precision(mAP) of the detector can reach 99.5%. In addition, in order to simulate the application scenario of this method in actual production, a semi-automatic image acquisition machine platform was designed and customized for collecting printed labels on the surface of cylindrical samples, and a self-developed image processing and statistical analysis software was used for sample collection, image processing and statistical analysis. The method and platform can be easily extended and applied to other industrial quality control and defect detection systems.

    參考文獻
    相似文獻
    引證文獻
引用本文

莊昌乾,李璟文.基于YOLOv5和生成對抗網(wǎng)絡(luò )的塑料標簽缺陷檢測計算機測量與控制[J].,2023,31(7):91-98.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-03-01
  • 最后修改日期:2023-03-03
  • 錄用日期:2023-03-06
  • 在線(xiàn)發(fā)布日期: 2023-07-12
  • 出版日期:
文章二維碼
阳高县| 铁岭县| 谢通门县| 元江| 福贡县| 桑日县| 丹东市| 礼泉县| 文成县| 镇雄县| 北碚区| 中方县| 普格县| 彩票| 陵水| 怀仁县| 杂多县| 库尔勒市| 三穗县| 罗江县| 应用必备| 武强县| 眉山市| 昌吉市| 股票| 碌曲县| 开原市| 龙岩市| 大理市| 西充县| 牡丹江市| 大同市| 永定县| 彰化市| 巩义市| 日喀则市| 左贡县| 绥阳县| 土默特右旗| 广德县| 惠州市|