国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于超聲相控陣的聚乙烯管道缺陷信號重構方法研究
DOI:
CSTR:
作者:
作者單位:

江蘇省特種設備安全監督檢驗研究院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

P228.4

基金項目:

國 家 市 場(chǎng) 監 督 管 理 總 局(2020MK039),江蘇省市場(chǎng)監督管理局項目(KJ21125037)。


Research on Reconstruction Method of Polyethylene Pipeline Defect Signal Based on Ultrasonic Phased Array
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    在對聚乙烯管道缺陷進(jìn)行超聲檢測的過(guò)程中,由于聚乙烯材料中傳播的聲速小,散射噪聲強,信噪比極低,并且儀器設備本身會(huì )受到電信號干擾,從而影響缺陷成像的結果。因此針對A掃信號進(jìn)行數據處理以提高檢測圖像的質(zhì)量尤為重要。另一方面,采用陣元數較多的超聲相控陣探頭進(jìn)行不同類(lèi)型的聚乙烯管道缺陷的數據采集時(shí),將會(huì )得到大量的缺陷數據,對存儲、傳輸和處理帶來(lái)各種困難。而針對傳統方法進(jìn)行壓縮感知時(shí),如果信號的信噪比較低而重構均方誤差較大,則很難保留信號中重要信息,在低碼率下更容易產(chǎn)生細節丟失的問(wèn)題。所以本文提出一種基于K-SVD超完備字典學(xué)習的稀疏表示缺陷信號壓縮重構方法,借助該學(xué)習算法訓練過(guò)完備字典,并選擇高斯隨機矩陣為觀(guān)測矩陣和正交匹配追蹤算法(OMP)為重構算法對聚乙烯管道缺陷回波信號進(jìn)行壓縮感知,同時(shí)分析字典元素個(gè)數與迭代次數等參數變化對重構信號與成像效果的影響。

    Abstract:

    In the process of ultrasonic testing of polyethylene pipe defects, due to the low speed of sound propagation in polyethylene materials, loud scattering noise, extremely low signal-to-noise ratio, and the electrical signal interference of the instrument and equipment, the result of defect imaging can be affected. Therefore, it is particularly important to process the A-scan signal to improve the quality of the detected image. On the other hand, when ultrasonic phased array probes with more array elements are used to collect data of different types of polyethylene pipe defects, a large number of defect data will be obtained, which brings various difficulties to storage, transmission and processing. However, when using traditional compression sensing methods, if the signal has a low signal-to-noise ratio and a large reconstruction mean square error, it is difficult to retain important information in the signal, and it is more likely to cause the problem of loss of details at low bit-rate. Therefore, this paper proposes a sparse representation defect signal compression and reconstruction method based on K-SVD super complete dictionary learning. With the help of this learning algorithm, the over complete dictionary is trained, and the Gaussian random matrix is selected as the observation matrix and the orthogonal matching pursuit algorithm (OMP) is selected as the reconstruction algorithm to process the compressedSsensing of the polyethylene pipe defect echo signal. At the same time, the influence of the number of dictionary elements and the number of iterations on the reconstructed signal and imaging effect is analyzed.

    參考文獻
    相似文獻
    引證文獻
引用本文

鄭凱,吳軍,吳勝平,范正,王海濤,許倩,俞燕萍.基于超聲相控陣的聚乙烯管道缺陷信號重構方法研究計算機測量與控制[J].,2023,31(9):247-252.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-02-23
  • 最后修改日期:2023-03-30
  • 錄用日期:2023-03-31
  • 在線(xiàn)發(fā)布日期: 2023-09-18
  • 出版日期:
文章二維碼
疏附县| 永春县| 崇义县| 宣恩县| 句容市| 祥云县| 石台县| 五大连池市| 成安县| 苏尼特左旗| 凤庆县| 思茅市| 南城县| 大兴区| 蓬溪县| 潮安县| 南平市| 楚雄市| 甘泉县| 铁岭县| 德江县| 武邑县| 宁阳县| 无棣县| 漳浦县| 唐海县| 巫山县| 治县。| 昆山市| 武胜县| 三江| 朝阳市| 南溪县| 大洼县| 翼城县| 永嘉县| 牙克石市| 扶余县| 乌兰察布市| 沙坪坝区| 望城县|