国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于改進(jìn)YOLOv5的飛機艙門(mén)識別與定位方法研究
DOI:
CSTR:
作者:
作者單位:

中國民航大學(xué)電子信息與自動(dòng)化學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP391

基金項目:


Research on Aircraft door identification and Locationmethod based on improved YOLOv5
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    機場(chǎng)特種車(chē)輛的自動(dòng)靠機是未來(lái)智慧機場(chǎng)發(fā)展的必然要求,實(shí)現自動(dòng)靠機的關(guān)鍵是對飛機艙門(mén)進(jìn)行準確識別與定位;針對于此問(wèn)題,提出一種基于改進(jìn)YOLOv5和單目視覺(jué)的艙門(mén)識別與定位方法,通過(guò)在模型中加入了一種輕量化的卷積注意力模塊(CBAM,convolutional block attention module),提高了算法對飛機艙門(mén)的特征提取能力;針對YOLOv5的重復特征提取問(wèn)題,引入了空間金字塔池化結構(SPPCSPC,spatial pyramid pooling cross stage paritial connection),并改進(jìn)分組卷積組數為4,提高了算法的檢測精度;通過(guò)獲取候選框中角點(diǎn)的像素,利用空間幾何關(guān)系,實(shí)現了對艙門(mén)準確的三維定位。實(shí)驗結果表明,改進(jìn)后的YOLOv5算法mAP達到96.5%,相比原有算法提升了5.6%。在艙門(mén)前方19 m和1 m處時(shí),實(shí)時(shí)最大定位誤差分別為0.15 m和0.01 m,能夠滿(mǎn)足特種車(chē)輛靠機完成后與艙門(mén)保持5-10 cm的安全距離要求。

    Abstract:

    The automatic docking of airport special vehicles is an inevitable requirement for the development of smart airports in the future; The key to achieving automatic docking is to accurately identify and position the aircraft door.Aiming at this problem,proposes a door recognition and position method based on improved YOLOv5 and monocular vision. By adding a lightweight convolutional block attention module (CBAM) to the model, the algorithm improves its ability to extract features from aircraft doors; To solve the problem of repetitive feature extraction in YOLOv5, a spatial pyramid pooling cross stage partial connection (SPPCSPC) is introduced, and the number of group convolution groups is improved to 4, improving the detection accuracy of the algorithm; By obtaining the pixels of corner points in the candidate frame and utilizing spatial geometric relationships, accurate three-dimensional positioning of the aircraft door is achieved. The experimental results show that the improved YOLOv5 algorithm mAP reaches 96.5%, which is 5.6% higher than the original algorithm. At 19 m and 1 m in front of the aircraft door, the real-time maximum positioning error is 0.15 m and 0.01 m, respectively, which can meet the requirements of maintaining a safe distance of 5-10 cm from the aircraft door after the completion of docking of special vehicles.

    參考文獻
    相似文獻
    引證文獻
引用本文

張長(cháng)勇,郭聰,李玉洲,張朋武.基于改進(jìn)YOLOv5的飛機艙門(mén)識別與定位方法研究計算機測量與控制[J].,2024,32(1):142-149.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-02-22
  • 最后修改日期:2023-04-04
  • 錄用日期:2023-04-06
  • 在線(xiàn)發(fā)布日期: 2024-01-29
  • 出版日期:
文章二維碼
同德县| 天峨县| 竹山县| 上林县| 肥东县| 寿阳县| 子长县| 平阳县| 福泉市| 崇信县| 舟山市| 枝江市| 仙游县| 同仁县| 余干县| 靖远县| 霞浦县| 长武县| 长宁区| 高唐县| 渝北区| 张北县| 星子县| 兴义市| 建水县| 长沙县| 吉安县| 通化市| 色达县| 新泰市| 湘潭市| 搜索| 桐乡市| 涪陵区| 饶平县| 石渠县| 中方县| 尉氏县| 静乐县| 桐柏县| 杭州市|