国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

一種脆弱線(xiàn)路缺陷的圖像智能檢測算法設計
DOI:
CSTR:
作者:
作者單位:

1.貴州電網(wǎng)有限責任公司遵義供電局;2.中南民族大學(xué)

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

貴州電網(wǎng)有限責任公司項目(202054420001)


Design of an Intelligent Image Detection Method for Vulnerable Line Defects
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    配電線(xiàn)路穩定運行可以有效提升電力系統有序性,脆弱線(xiàn)路缺陷是引起配電網(wǎng)連鎖故障停電的主要原因。以人工為主的識別方法存在明顯缺陷,在無(wú)人機的輔助下,設計了一種脆弱線(xiàn)路缺陷圖像自動(dòng)檢測方法。通過(guò)構建脆弱線(xiàn)路數據集,以輸電線(xiàn)路的脆弱性綜合指標為依據,辨識配電網(wǎng)脆弱線(xiàn)路。建立配電網(wǎng)脆弱線(xiàn)路缺陷特征分類(lèi)標準,利用圖像增強技術(shù)提升脆弱線(xiàn)路缺陷圖像成像效果。采用對比度受限自適應直方圖均衡方法均衡脆弱線(xiàn)路缺陷圖像的色彩和反差,結合小波變換對均衡后的脆弱線(xiàn)路缺陷圖像進(jìn)行降噪處理。運用卷積神經(jīng)網(wǎng)絡(luò )將降噪后的脆弱線(xiàn)路缺陷圖像輸入至卷積層完成脆弱線(xiàn)路缺陷自動(dòng)檢測。通過(guò)實(shí)驗測試發(fā)現:提出方法的召回率最高為89.32%,精確率最高為98.20%,錯檢率最低為0.98%,能夠最小范圍識別脆弱線(xiàn)路缺陷,充分證實(shí)了提出算法檢測效率較高。

    Abstract:

    The stable operation of distribution lines can effectively improve the order of the power system. Vulnerable line defects are the main cause of cascading failures and blackouts in distribution networks. The artificial recognition method has obvious defects. With the help of UAV, an automatic detection method of fragile line defect image is designed. Based on the comprehensive vulnerability index of transmission lines, the vulnerable lines of distribution network are identified by constructing the vulnerable line data set. Establish the classification standard of vulnerable line defect characteristics in distribution network, and use image enhancement technology to improve the imaging effect of vulnerable line defect images. The contrast limited adaptive histogram equalization method is used to balance the color and contrast of the fragile line defect image, and the wavelet transform is used to denoise the balanced fragile line defect image. The convolution neural network is used to input the de-noised fragile line defect image into the convolution layer to complete the automatic detection of fragile line defects. Through experimental tests, it is found that the highest recall rate of the proposed method is 89.32%, the highest accuracy rate is 98.20%, and the lowest error detection rate is 0.98%. It can identify the vulnerable line defects in the minimum range, which fully proves that the proposed algorithm has high detection efficiency.

    參考文獻
    相似文獻
    引證文獻
引用本文

張曉峰,趙益山,黃楚偉.一種脆弱線(xiàn)路缺陷的圖像智能檢測算法設計計算機測量與控制[J].,2023,31(7):107-111.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-02-21
  • 最后修改日期:2023-02-24
  • 錄用日期:2023-02-24
  • 在線(xiàn)發(fā)布日期: 2023-07-12
  • 出版日期:
文章二維碼
新化县| 隆化县| 乐业县| 松阳县| 合江县| 苍溪县| 武安市| 湘乡市| 汾阳市| 铁岭县| 肇东市| 临猗县| 化德县| 库尔勒市| 炎陵县| 安阳市| 卢湾区| 曲麻莱县| 泸定县| 霍林郭勒市| 平昌县| 金乡县| 宝应县| 应城市| 成安县| 宜兰县| 巴彦县| 连山| 太湖县| 奎屯市| 监利县| 饶平县| 蕲春县| 渝中区| 比如县| 太原市| 新干县| 定远县| 灵川县| 英超| 平度市|