国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于改進(jìn)YOLOv5的橋梁裂縫模型研究
DOI:
CSTR:
作者:
作者單位:

太原科技大學(xué)

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP

基金項目:

山西省基礎研究計劃(自由探索類(lèi))面上項目(202303021211205)。


Research on bridge crack model based on improved YOLOv5
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    橋梁裂縫人工檢測耗時(shí)費力、安全性不高,為了高效、準確、無(wú)接觸的對橋梁裂縫進(jìn)行識別檢測,提出一種基于改進(jìn)YOLOv5的橋梁裂縫檢測模型YOLOv5-SA;該方法在YOLOv5s模型的基礎上,首先對收集的數據集利用幾何變換、光學(xué)變換等操作進(jìn)行數據增強;其次將融合視覺(jué)注意力機制 (SKNet,Selective Kernel Networks)添加到Head部分來(lái)提高模型對裂縫特征的表示能力;最后在金字塔特征表示法(FPN)的基礎上利用自適應空間特征融合(ASFF, Adaptively Spatial Feature Fusion)模塊加強網(wǎng)絡(luò )特征融合能力,增加對橋梁裂縫小目標的檢測;結果表明:改進(jìn)后的模型相對于YOLOv5s模型能更好的抑制非關(guān)鍵信息,減少背景中的無(wú)效信息干擾,提高橋梁裂縫目標檢測精準度;改進(jìn)后的YOLOv5-SA模型準確率達到88.1%,與原YOLOv5s模型相比提高了1.6%;平均精度均值mAP0.5和mAP0.5-0.95分別達到90.0%、62.1%,相比而言分別提高了2.2%、2.4%;與其他橋梁裂縫檢測相關(guān)方法(Faster-RCNN、YOLOv4tiny)相比,提出的YOLOv5-SA模型也具有相當或更好的檢測性能;由此可見(jiàn)改進(jìn)后的模型能更高效的檢測復雜環(huán)境下的橋梁裂縫,可以為工業(yè)檢測提供一部分思路。

    Abstract:

    Manual detection of bridge cracks is time-consuming and laborious, and the safety is not high. In order to identify and detect bridge cracks efficiently, accurately and without contact, a bridge crack detection model YOLOV5-SA based on improved YOLOv5 is proposed. Based on the YOLOv5s model, firstly, the collected data set is enhanced by geometric transformation and optical transformation. Secondly, Selective Kernel Networks (SKNet, Selective Kernel Networks) were added to the Head part to improve the representation ability of crack features. Finally, on the basis of pyramid Feature notation (FPN), Adaptively Spatial Feature Fusion module was used to strengthen the network feature fusion ability, and to increase the detection of small targets for bridge cracks. The results show that compared with the YOLOv5s model, the improved model can suppress non-critical information better, reduce the interference of invalid information in the background, and improve the accuracy of bridge crack target detection. The accuracy of the improved YOLOv5-SA model reaches 88.1%, which is 1.6% higher than that of the original YOLOv5s model. The average accuracy of mAP0.5 and MAP0.5-0.95 reached 90.0% and 62.1%, respectively, which increased by 2.2% and 2.4%. Compared with other methods related to bridge crack detection (Faster-RCNN, YOLOv4tiny), the proposed YOLOv5-SA model also has comparable or better detection performance. It can be seen that the improved model can detect bridge cracks in complex environments more efficiently, which can provide some ideas for industrial detection.

    參考文獻
    相似文獻
    引證文獻
引用本文

郭佳佳,董增壽,常春波.基于改進(jìn)YOLOv5的橋梁裂縫模型研究計算機測量與控制[J].,2023,31(12):188-194.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-02-03
  • 最后修改日期:2023-03-10
  • 錄用日期:2023-03-13
  • 在線(xiàn)發(fā)布日期: 2023-12-27
  • 出版日期:
文章二維碼
江山市| 津市市| 务川| 松桃| 集贤县| 九龙县| 井冈山市| 吐鲁番市| 逊克县| 阳高县| 磴口县| 合川市| 济源市| 阿鲁科尔沁旗| 宜丰县| 双柏县| 长葛市| 淳化县| 中江县| 蒙城县| 游戏| 吉首市| 嵊州市| 衡水市| 云南省| 益阳市| 进贤县| 临猗县| 八宿县| 溧阳市| 静宁县| 宁国市| 云梦县| 肥乡县| 普宁市| 富顺县| 象山县| 乾安县| 申扎县| 巴林左旗| 井冈山市|