国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于邊緣檢測及RBF神經(jīng)網(wǎng)絡(luò )的遙感圖像幀特征動(dòng)態(tài)識別技術(shù)
DOI:
CSTR:
作者:
作者單位:

西安交通大學(xué)城市學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

西安交通大學(xué)城市學(xué)院2020年度校級科研項目,立項編號:202002X03


Dynamic recognition technology of remote sensing image frame features based on edge detection and RBF neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為解決分辨率超限問(wèn)題,實(shí)現對遙感圖像幀特征對象的精準識別,提出基于邊緣檢測及RBF神經(jīng)網(wǎng)絡(luò )的遙感圖像幀特征動(dòng)態(tài)識別技術(shù)。求解微分算子與OTSU閾值,并以此為基礎,確定邊緣節點(diǎn)追蹤參數的取值范圍,實(shí)現對遙感圖像邊緣檢測。根據RBF神經(jīng)網(wǎng)絡(luò )機制的構建標準,推導神經(jīng)性激活函數,完成RBF神經(jīng)網(wǎng)絡(luò )識別模型的設計。在所選遙感圖像中,實(shí)施幀特征分割處理,再聯(lián)合動(dòng)態(tài)合并條件,計算超像素指標與并行識別參量,完成基于邊緣檢測及RBF神經(jīng)網(wǎng)絡(luò )的遙感圖像幀特征動(dòng)態(tài)識別方法的設計。實(shí)驗結果表明,在邊緣檢測與RBF神經(jīng)網(wǎng)絡(luò )模型的作用下,主機元件在長(cháng)、寬、高三個(gè)方向上對于遙感圖像幀特征對象的識別精度都達到了100%,分辨率超限問(wèn)題得到較好解決,符合精準識別遙感圖像特征的實(shí)際應用需求。

    Abstract:

    In order to solve the problem of resolution overrun and realize accurate recognition of remote sensing image frame feature objects, a dynamic recognition technology of remote sensing image frame feature based on edge detection and RBF neural network is proposed. Solve the differential operator and OTSU threshold, and determine the value range of the tracking parameters of the edge node based on this, so as to realize the edge detection of the remote sensing image. According to the construction standard of RBF neural network mechanism, the neural activation function is deduced and the RBF neural network recognition model is designed. In the selected remote sensing image, the frame feature segmentation processing is implemented, and then combined with dynamic merging conditions, the super-pixel index and parallel recognition parameters are calculated, and the design of dynamic recognition method of remote sensing image frame feature based on edge detection and RBF neural network is completed. The experimental results show that under the action of edge detection and RBF neural network model, the recognition accuracy of the host component for the remote sensing image frame feature object in the three directions of length, width and height has reached 100%, and the problem of resolution overrun has been well solved, which meets the practical application requirements of accurate recognition of remote sensing image features.

    參考文獻
    相似文獻
    引證文獻
引用本文

薛薇,張鋒,凡靜,王博,李娜.基于邊緣檢測及RBF神經(jīng)網(wǎng)絡(luò )的遙感圖像幀特征動(dòng)態(tài)識別技術(shù)計算機測量與控制[J].,2023,31(7):163-168.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-01-18
  • 最后修改日期:2023-02-27
  • 錄用日期:2023-02-28
  • 在線(xiàn)發(fā)布日期: 2023-07-12
  • 出版日期:
文章二維碼
嵩明县| 宁安市| 平潭县| 宁城县| 临武县| 通许县| 怀宁县| 青龙| 台中县| 凤山县| 常熟市| 那坡县| 沾化县| 普格县| 水富县| 泽库县| 祁连县| 宜良县| 南开区| 武功县| 三明市| 乃东县| 镶黄旗| 白水县| 松桃| 旌德县| 江山市| 桐柏县| 金川县| 星座| 红桥区| 梁山县| 榆社县| 东乡县| 嘉荫县| 昌邑市| 乌海市| 博野县| 靖西县| 淮安市| 林州市|