国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于神經(jīng)網(wǎng)絡(luò )PID的疏浚管道泥漿流速控制
DOI:
CSTR:
作者:
作者單位:

河海大學(xué) 機電工程學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家重點(diǎn)研發(fā)計劃專(zhuān)題項目(2018YFC040740405),河海大學(xué)大學(xué)生創(chuàng )新訓練項目(202210294109Z)


Neural network PID-based slurry flow rate control for dredging pipelines
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    疏浚作業(yè)中,泥漿管道內物料的組成、粒徑、濃度等隨水下地形土質(zhì)等變化很大,易造成流速波動(dòng)甚至堵管、爆管等故障,因此泥漿流速穩定控制對泥漿輸送的效率和安全具有重要意義;疏浚管道輸送系統具有非線(xiàn)性、大時(shí)滯和參數時(shí)變等特征,傳統PID控制方法效果不佳,故此將BP神經(jīng)網(wǎng)絡(luò )和傳統PID控制算法相結合,并將其應用于泥漿流速控制中。以河海大學(xué)管道輸送實(shí)驗平臺為對象,采用受控自回歸CAR模型描述泥泵變頻器頻率與管道泥漿流速之間的關(guān)系,通過(guò)實(shí)驗和數值處理對模型進(jìn)行離線(xiàn)辨識;在此基礎上通過(guò)仿真對比傳統PID、單神經(jīng)元PID和BP-PID的流速控制性能,發(fā)現BP-PID控制器的超調量?jì)H為3.8%,響應時(shí)間為11s,控制性能較好;最后通過(guò)在體積濃度~10%到~30%泥漿范圍內,泥漿濃度小幅度和大幅度增減實(shí)驗,對流速控制方法進(jìn)行了驗證,結果表明在濃度平緩或劇烈波動(dòng)時(shí),采用BP-PID控制算法的流速控制系統,均能夠在保證輸送安全的前提下,快速、穩定地達到目標流速,具有較好的自適應控制性能。

    Abstract:

    In dredging operations, the composition, particle size and concentration of the material in the mud pipeline vary greatly with the underwater topography and soil quality, which may cause flow rate fluctuations and even blockage and bursting of the pipeline. Therefore, the stable control of mud flow rate is of great significance to the efficiency and safety of mud conveying. The dredging pipeline conveying system is characterized by nonlinearity, large time lag and time-varying parameters, and the traditional PID control method is not effective. Therefore, BP neural network and traditional PID control algorithm are combined and applied to the slurry flow rate control. The relationship between mud pump inverter frequency and pipe slurry flow rate is described by a controlled autoregressive CAR model with the pipeline conveying experimental platform of Hohai University, and the model is identified offline through experiments and numerical processing. On this basis, the flow rate control performance of conventional PID, single neuron PID and BP-PID are compared by simulation. It is found that the overshoot of BP-PID controller is only 3.8% and the response time is 11s for better control performance. Finally, the flow rate control method was validated by small and large increases and decreases in mud concentration in the range of ~10% to ~30% volume concentration. The results show that the flow rate control system with BP-PID control algorithm can achieve the target flow rate quickly and stably with good adaptive control performance while ensuring the safety of conveying when the concentration is calm or fluctuating drastically.

    參考文獻
    相似文獻
    引證文獻
引用本文

蔣爽,劉世紀,高禮科,倪福生.基于神經(jīng)網(wǎng)絡(luò )PID的疏浚管道泥漿流速控制計算機測量與控制[J].,2023,31(11):198-203.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-01-14
  • 最后修改日期:2023-02-28
  • 錄用日期:2023-02-28
  • 在線(xiàn)發(fā)布日期: 2023-11-23
  • 出版日期:
文章二維碼
蕲春县| 保靖县| 松滋市| 长白| 龙胜| 札达县| 措勤县| 汉川市| 桃源县| 财经| 蕲春县| 达尔| 广东省| 三明市| 太仆寺旗| 时尚| 新乡县| 泽州县| 屏山县| 南溪县| 南木林县| 浪卡子县| 山阴县| 武川县| 循化| 灌云县| 阳谷县| 崇阳县| 图们市| 芮城县| 留坝县| 河津市| 靖边县| 偏关县| 潢川县| 大竹县| 中山市| 泰兴市| 乌兰察布市| 江山市| 东源县|