国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于Xgboost優(yōu)化的KELM滑坡預報模型研究
DOI:
CSTR:
作者:
作者單位:

西安思源學(xué)院 理工學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP389.1

基金項目:

陜西省教育廳科研計劃資助項目(2022JK0515) 陜西省自然科學(xué)基礎研究計劃項目(2023-JC-YB-464)


Research on the Kelm Lirkeling Forecast Model Based on Xgboost
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對極限學(xué)習機對滑坡預測準確性低及在訓練過(guò)程中模型不穩定的問(wèn)題,引入RBF高斯核函數并使用極限梯度提升樹(shù)算法Xgboost對KELM進(jìn)行優(yōu)化,建立了Xgboost優(yōu)化后的Xgboost-KELM預測模型;首先采用高斯核RBF作為極限學(xué)習機的核函數,解決隱藏節點(diǎn)隨機映射問(wèn)題,增加模型穩定性及適用性;其次將清洗后的監測數據作為模型輸入,并使用Xgboost尋優(yōu)算法對核函數中的超參數進(jìn)行優(yōu)化,通過(guò)4組測試集進(jìn)行Xgboost-KELM建模,依據均方誤差迭代曲線(xiàn)得出最佳超參數;最后使用兩組10%樣本集驗證模型評價(jià)指標及穩定性,實(shí)驗結果AUC均值對比模型至少提高3個(gè)百分點(diǎn),Precision、Accuracy及Recall至少高于對比模型1.7個(gè)百分點(diǎn),同時(shí)Xgboost-KELM模型的方差及偏差都較小,證明該模型穩定性較好,實(shí)驗結果說(shuō)明Xgboost-KELM模型具有較好的預測效果,在滑坡災害預測中有較好的預測能力。

    Abstract:

    To solve the problems of low accuracy of extreme learning machine (ELM) in landslide prediction, and the instability of the model in the training process, RBF Gaussian kernel function is introduced and Xgboost algorithm is used to optimize KELM, and Xgboost KELM prediction model after Xgboost optimization is established; Firstly, the Gaussian kernel RBF is used as the kernel function of the limit learning machine to solve the problem of random mapping of hidden nodes and increase the stability and applicability of the model; Secondly, the cleaned monitoring data is used as the model input, and Xgboost optimization algorithm is used to optimize the super parameters in the kernel function. Xgboost KELM modeling is conducted through four groups of test sets, and the best super parameters are obtained according to the mean square error iteration curve; Finally, two groups of 10% sample sets were used to verify the model evaluation indicators and stability. The experimental results showed that the AUC mean increased by 3 percentage points compared with that before optimization, and the Precision, Accuracy and Recall were at least 1.7 percentage points higher than that of the comparison model. At the same time, the variance and deviation of Xgboost KELM model were small, which proved that the model was stable. The experimental results showed that Xgboost KELM model had a good prediction effect, It has good prediction ability in landslide disaster prediction.

    參考文獻
    相似文獻
    引證文獻
引用本文

李璐,徐根祺,楊倩,王艷娥,趙正健.基于Xgboost優(yōu)化的KELM滑坡預報模型研究計算機測量與控制[J].,2023,31(4):225-231.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-12-29
  • 最后修改日期:2023-01-04
  • 錄用日期:2023-01-05
  • 在線(xiàn)發(fā)布日期: 2023-04-24
  • 出版日期:
文章二維碼
合阳县| 大同市| 阿图什市| 炉霍县| 安溪县| 印江| 东台市| 丰顺县| 黄龙县| 霍城县| 房产| 罗城| 德安县| 佳木斯市| 北京市| 横山县| 昌图县| 红河县| 阳原县| 闽侯县| 西华县| 遂溪县| 湘西| 丽江市| 千阳县| 天水市| 泾源县| 平武县| 乾安县| 六枝特区| 鲁山县| 从江县| 崇明县| 屏东县| 深州市| 准格尔旗| 鹤山市| 六盘水市| 浦城县| 瓮安县| 长乐市|