国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于參數聯(lián)合優(yōu)化VMD-SVM的工業(yè)機器人旋轉部件故障診斷方法
DOI:
CSTR:
作者:
作者單位:

1.河海大學(xué)物聯(lián)網(wǎng)工程學(xué)院;2.重慶郵電大學(xué)工業(yè)物聯(lián)網(wǎng)與網(wǎng)絡(luò )化控制教育部重點(diǎn)實(shí)驗室

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家重點(diǎn)研發(fā)計劃項目


Fault Diagnosis for Rolling Parts of Industrial Robot Based on Parameter Collaborative Optimization VMD-SVM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對因工業(yè)機器人旋轉部件故障診斷模型最優(yōu)參數難以自適應確定導致故障識別率低的問(wèn)題,提出了一種參數聯(lián)合優(yōu)化的VMD-SVM的工業(yè)機器人旋轉部件故障診斷方法;提出了一種基于遺傳變異的改進(jìn)灰狼算法,該算法采用Logistic混沌映射進(jìn)行種群初始化,將非線(xiàn)性因子引入位置更新公式,并利用遺傳變異策略解決算法陷入局部最優(yōu)時(shí)的停滯現象;基于該算法對VMD和SVM進(jìn)行參數聯(lián)合優(yōu)化;利用參數優(yōu)化的VMD對故障信號進(jìn)行分解,對所得的本征模態(tài)函數計算改進(jìn)樣本熵以構成特征向量,再輸入至參數優(yōu)化的SVM完成工業(yè)機器人旋轉部件的故障診斷;仿真和實(shí)驗結果表明,本文方法能夠準確地進(jìn)行故障診斷,在信號無(wú)噪和含噪的條件下準確率最高均達100%,較EMD、LMD、DTCWT、VMD等四種方法具有更優(yōu)的指標。

    Abstract:

    Aiming?at?the?low?diagnostic?recognition?rate?caused?by?the difficulty in determining optimal parameters of fault diagnosis model adaptively for industrial robot rolling parts, a fault diagnosis method based on parameter collaborative optimization variational?mode?decomposition?(VMD) - support?vector?machine (SVM) is proposed. An improved grey wolf optimization based on genetic variation is proposed. In this algorithm, a logistic chaotic map is adopted in population initialization, a nonlinear convergence factor is introduced in updating the location of grey wolf, and a genetic variation strategy is used to solve the stagnation phenomenon when the algorithm is stuck in the local optimum. The algorithm is used to optimize the parameters of VMD and SVM collaboratively. Fault?signals are decomposed into intrinsic mode functions (IMF) by?the parameter?optimization?VMD method, and the improved sample entropy of these IMFs are calculated to form feature vectors, which are then brought to SVM for fault diagnosis for rolling parts of an industrial robot. The?simulation?results?show that the proposed method is effective in fault diagnosing, with the accuracy up to 100% under the condition of both noised and noiseless signal, which is superior than the accuracy of other methods such as empirical mode decomposition (EMD), local mean decomposition (LMD), Dual-tree?complex?wavelets (DTCWT) and VMD.

    參考文獻
    相似文獻
    引證文獻
引用本文

王曉鎣,李帥永.基于參數聯(lián)合優(yōu)化VMD-SVM的工業(yè)機器人旋轉部件故障診斷方法計算機測量與控制[J].,2023,31(5):62-72.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-12-22
  • 最后修改日期:2023-02-06
  • 錄用日期:2023-02-07
  • 在線(xiàn)發(fā)布日期: 2023-05-19
  • 出版日期:
文章二維碼
长顺县| 湘乡市| 宁德市| 阳西县| 奉节县| 惠安县| 霍林郭勒市| 社旗县| 鄂伦春自治旗| 乌鲁木齐县| 吉林省| 荆门市| 黑河市| 巴马| 曲松县| 乌审旗| 剑川县| 瓮安县| 奉贤区| 德昌县| 财经| 东海县| 新田县| 精河县| 辽中县| 木兰县| 手机| 遂川县| 家居| 连平县| 珲春市| 霍邱县| 广元市| 宁夏| 武乡县| 银川市| 托克托县| 大名县| 贵定县| 丹寨县| 理塘县|