国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于深度強化學(xué)習的車(chē)輛多目標協(xié)同巡航?jīng)Q策控制系統設計
DOI:
CSTR:
作者:
作者單位:

河池學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TM461???

基金項目:

2022年度廣西中青年教師科研基礎能力提升項目:基于強化學(xué)習的智能車(chē)決策算法研究,2022KY0606


Design of vehicle multi-objective cooperative cruise decision control system based on deep reinforcement learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為提升車(chē)輛巡航避障能力,實(shí)現對運動(dòng)目標的精準決策,設計基于深度強化學(xué)習的車(chē)輛多目標協(xié)同巡航?jīng)Q策控制系統。利用主控制電路輸出的電量信號,調節ACC控制器、MPC軌跡跟蹤器、雙閉環(huán)控制器的實(shí)時(shí)連接狀態(tài),再借助多目標解耦模塊,確定目標車(chē)輛所處巡航位置,完成巡航?jīng)Q策控制系統的主要應用結構設計。建立深度強化學(xué)習模型,根據車(chē)輛目標數據集定義條件,求解協(xié)同參數實(shí)際取值范圍,實(shí)現對車(chē)輛巡航位姿的估計。確定坐標轉換原則,通過(guò)分析多目標量化結果的方式,實(shí)現對巡航?jīng)Q策軌跡的按需規劃,再聯(lián)合相關(guān)應用設備,完成基于深度強化學(xué)習的車(chē)輛多目標協(xié)同巡航?jīng)Q策控制系統的設計。實(shí)驗結果表明,深度強化學(xué)習機制作用下,車(chē)輛在橫、縱兩個(gè)巡航方向上的避障準確度都達到了100%,符合車(chē)輛多目標協(xié)同巡航?jīng)Q策的實(shí)際需求。

    Abstract:

    In order to improve the vehicle cruise obstacle avoidance ability and achieve accurate decision-making on moving targets, a vehicle multi-target collaborative cruise decision-making control system based on deep reinforcement learning is designed. The electricity signal output from the main control circuit is used to adjust the real-time connection state of ACC controller, MPC track tracker and double closed loop controller. Then, with the help of multi-objective decoupling module, the cruise position of the target vehicle is determined, and the main application structure design of the cruise decision-making control system is completed. The depth reinforcement learning model is established. According to the definition conditions of vehicle target data set, the actual value range of collaboration parameters is solved to realize the estimation of vehicle cruise pose. Determine the coordinate conversion principle, realize the on-demand planning of the cruise decision-making trajectory by analyzing the multi-target quantitative results, and then combine relevant application equipment to complete the design of the vehicle multi-target collaborative cruise decision-making control system based on in-depth reinforcement learning. The experimental results show that under the deep reinforcement learning mechanism, the obstacle avoidance accuracy of the vehicle in both horizontal and vertical cruising directions reaches 100%, which meets the actual requirements of vehicle multi-target cooperative cruise decision-making.

    參考文獻
    相似文獻
    引證文獻
引用本文

宋倩,羅富貴,藍俊歡.基于深度強化學(xué)習的車(chē)輛多目標協(xié)同巡航?jīng)Q策控制系統設計計算機測量與控制[J].,2023,31(10):115-121.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-12-16
  • 最后修改日期:2023-02-01
  • 錄用日期:2023-02-02
  • 在線(xiàn)發(fā)布日期: 2023-10-26
  • 出版日期:
文章二維碼
察哈| 阿鲁科尔沁旗| 钟祥市| 富宁县| 长泰县| 普兰县| 东宁县| 广水市| 昌乐县| 咸宁市| 霍林郭勒市| 嵊泗县| 遂川县| 舟曲县| 若尔盖县| 刚察县| 原阳县| 井陉县| 宝清县| 正宁县| 漳州市| 衡南县| 霍邱县| 诸城市| 泰州市| 图片| 仁布县| 合山市| 新丰县| 全南县| 阳高县| 兴山县| 高台县| 开原市| 康定县| 金川县| 诸城市| 武安市| 南充市| 积石山| 邢台县|