国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于時(shí)間序列自回歸模型的綠色建筑供暖能耗短期預測
DOI:
CSTR:
作者:
作者單位:

成都理工大學(xué) 旅游與城鄉規劃學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP183

基金項目:

四川省2021-2023年高等教育人才培養質(zhì)量和教學(xué)改革項目(JG2021-721)


Short-Term Prediction of Heating Energy Consumption in Green Buildings Based on Time Series Autoregressive Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為實(shí)時(shí)了解綠色建筑供暖能耗的變化趨勢,提升能耗預測效果,設計基于時(shí)間序列自回歸模型的綠色建筑供暖能耗短期預測方法。利用增強迪基-福勒檢驗法,檢驗綠色建筑歷史供暖能耗時(shí)間序列平穩性;對非平穩的歷史能耗時(shí)間序列進(jìn)行差分平穩化處理,獲取平穩的歷史能耗時(shí)間序列;在時(shí)間序列自回歸模型內添加移動(dòng)平均模型,并考慮能耗的氣溫影響因素,建立時(shí)間序列自回歸移動(dòng)平均模型;利用赤池信息準則確定模型階數,通過(guò)粒子群算法確定模型參數;在模型階數與參數確定后的模型內,輸入平穩的歷史能耗時(shí)間序列,輸出供暖能耗短期預測值。實(shí)驗證明:該方法可精準預測不同類(lèi)型綠色建筑的短期供暖能耗;在不同綠色建筑滲透量時(shí),該方法短期供暖能耗預測誤差較小;在不同室外溫度時(shí),該方法短期供暖能耗預測的可決系數較高,即預測精度較高。

    Abstract:

    In order to understand the change trend of heating energy consumption in green buildings in real time and improve the prediction effect of energy consumption, a short-term prediction method of heating energy consumption in green buildings based on time series autoregression model is designed. The enhanced Dickie Fowler test is used to test the stability of the historical heating energy consumption time series of green buildings; The non-stationary historical energy consumption time series is processed by difference stationarization to obtain a stable historical energy consumption time series; Add a moving average model to the time series autoregressive model, and consider the temperature influence factors of energy consumption to establish a time series autoregressive moving average model; The order of the model is determined by Akchi information criterion, and the model parameters are determined by particle swarm optimization algorithm; After the model order and parameters are determined, stable historical energy consumption time series are input into the model, and short-term prediction value of heating energy consumption is output. The experiment shows that this method can accurately predict the short-term heating energy consumption of different types of green buildings; The short-term heating energy consumption prediction error of this method is small when the infiltration amount of green buildings is different; At different outdoor temperatures, this method has a high determinable coefficient of short-term heating energy consumption prediction, that is, the prediction accuracy is high.

    參考文獻
    相似文獻
    引證文獻
引用本文

范英潔,張青.基于時(shí)間序列自回歸模型的綠色建筑供暖能耗短期預測計算機測量與控制[J].,2023,31(4):289-294.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-12-06
  • 最后修改日期:2023-01-07
  • 錄用日期:2023-01-09
  • 在線(xiàn)發(fā)布日期: 2023-04-24
  • 出版日期:
文章二維碼
察雅县| 潮安县| 楚雄市| 临沧市| 永川市| 海门市| 白河县| 明光市| 牟定县| 新野县| 香河县| 临泉县| 黄浦区| 禄劝| 嵊州市| 岳池县| 长兴县| 株洲市| 肃北| 曲麻莱县| 惠水县| 宽甸| 梁河县| 江川县| 沙坪坝区| 惠来县| 体育| 桂林市| 滦平县| 增城市| 社会| 乌审旗| 剑川县| 盐山县| 天长市| 韶山市| 资兴市| 林州市| 子长县| 长子县| 孙吴县|