国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于改進(jìn)灰狼優(yōu)化算法的支持向量回歸預測
DOI:
CSTR:
作者:
作者單位:

常州大學(xué) 機械與軌道交通學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP181

基金項目:

國家自然科學(xué)(51875053)


Support Vector Regression Prediction Based on Improved Grey Wolf Optimization Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了提高支持向量回歸(SVR, Support Vector Regression)進(jìn)行數據驅動(dòng)預測的精度,針對SVR存在的參數優(yōu)化問(wèn)題,通過(guò)引入Tent混沌映射進(jìn)行種群初始化、改進(jìn)收斂方式、并結合模擬退火算法,改進(jìn)了傳統的灰狼優(yōu)化算法(GWO, Grey Wolf Optimization)來(lái)優(yōu)化SVR超參數,并基于改進(jìn)后的GWO算法提出了一種IGWO-SVR預測模型。將提出的IGWO-SVR模型應用于NASA鋰電池數據集仿真SOH預測以及實(shí)際生產(chǎn)中的車(chē)燈電流預測實(shí)驗后,實(shí)驗結果表明IGWO-SVR預測模型在NASA鋰電池數據集上進(jìn)行預測的誤差相較GWO-SVR模型降低了23%,相較粒子群算法和遺傳算法優(yōu)化的SVR模型均存在明顯優(yōu)勢,誤差分別降低了39%和51%;在實(shí)際工作中使用IGWO-SVR模型進(jìn)行車(chē)燈電流預測也取得良好效果,與實(shí)測值之間的相對誤差達到2.67%,相較GWO-SVR模型誤差降低了近7個(gè)百分點(diǎn),證明了模型在實(shí)際應用中的具有良好的價(jià)值。

    Abstract:

    In order to improve the accuracy of data-driven prediction by Support Vector Regression (SVR), the traditional Grey Wolf Optimization (GWO) algorithm is improved to optimize the SVR hyperparameters by introducing Tent chaotic mapping for population initialization, improving the convergence method, and combining with simulated annealing algorithm for the parameter optimization problem of SVR. And an IGWO-SVR prediction model is proposed based on the improved GWO algorithm. After applying the proposed IGWO-SVR model to the simulated SOH prediction of NASA lithium battery dataset and the actual production lamp current prediction experiments, the experimental results show that the prediction error of the IGWO-SVR prediction model on the NASA lithium battery dataset is reduced by 23% compared with that of the GWO-SVR model, and there is a significant advantage over both the particle swarm algorithm and the genetic algorithm optimized SVR model. In practice, the IGWO-SVR model has also achieved good results in predicting the lamp current, with a relative error of 2.67% compared to the measured value, which is nearly 7 percentage points lower than that of the GWO-SVR model, proving the value of the model in practical applications.

    參考文獻
    相似文獻
    引證文獻
引用本文

鐘世云,張屹,戴杰,錢(qián)駿.基于改進(jìn)灰狼優(yōu)化算法的支持向量回歸預測計算機測量與控制[J].,2023,31(7):8-14.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-11-07
  • 最后修改日期:2022-12-06
  • 錄用日期:2022-12-07
  • 在線(xiàn)發(fā)布日期: 2023-07-12
  • 出版日期:
文章二維碼
通江县| 东乡| 忻州市| 逊克县| 武宁县| 班戈县| 赣榆县| 象州县| 泰顺县| 柯坪县| 沿河| 望谟县| 沐川县| 周口市| 来宾市| 南京市| 富蕴县| 东莞市| 上饶市| 成都市| 梅河口市| 浏阳市| 大竹县| 陆丰市| 札达县| 皮山县| 梧州市| 江口县| 滕州市| 昆山市| 海南省| 锡林浩特市| 赫章县| 山丹县| 石阡县| 剑川县| 海口市| 新民市| 安康市| 司法| 根河市|