国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于改進(jìn)Yolo v5的花色布匹瑕疵檢測方法
DOI:
CSTR:
作者:
作者單位:

1.江南大學(xué)物聯(lián)網(wǎng)工程學(xué)院;2.江南大學(xué)物聯(lián)網(wǎng)工程學(xué)院 3. 4.副教授

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家自然科學(xué)基金青年項目(NO.6170185)項目資助


An improved Fabric defect detection method based on Yolov5
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    花色布匹的瑕疵檢測是紡織工業(yè)中必不可少的環(huán)節,實(shí)現快速、準確的花色布匹瑕疵檢測對于提高生產(chǎn)效率具有重要意義;針對花色布匹瑕疵檢測中大部分瑕疵目標較小、種類(lèi)分布不均、部分瑕疵長(cháng)寬比較為極端以及瑕疵與背景易混淆的檢測難點(diǎn),提出了一種基于YOLOv5網(wǎng)絡(luò )改進(jìn)的算法模型DD-YOLOv5;在骨干網(wǎng)絡(luò )中采用上下文變換器網(wǎng)絡(luò )(CoTNet,Contextual Transformer Networks),增強視覺(jué)表示能力;在頸部網(wǎng)絡(luò )中引入卷積注意力模塊 (CBAM,Convolutional Block Attention Module),使網(wǎng)絡(luò )學(xué)會(huì )關(guān)注重點(diǎn)信息;在檢測環(huán)節增加了一個(gè)高分辨率的檢測頭,加強對小目標的檢測;并且使用α-IoU代替原網(wǎng)絡(luò )中G-IoU方法;經(jīng)實(shí)驗證明,改進(jìn)后的算法在花色布匹瑕疵數據集平均精度均值上 (mAP,mean Average Precision)達到了較原生算法相比提升了8.1%,檢測速度也達到了73.6Hz。

    Abstract:

    The defect detection of cloth of suit color is an indispensable link in the textile industry. It is of great significance to realize the rapid and accurate defect detection of cloth of suit color to improve the production efficiency. In order to solve the detection difficulties in the detection of patterned cloth defects, such as most defect targets are small, the distribution of types is uneven, the comparison of length and width of some defects is extreme, and the defects are easily confused with background, an improved algorithm model DD-YOLOv5 based on YOLOv5 network was proposed. Contextual Transformer Networks (CoTNet, Contextual Transformer Networks) are used within the backbone to enhance visual presentation capabilities; By introducing CBAM (Convolutional Block Attention Module) into the neck network, the network learns to focus on the key information. A high resolution detection head is added in the detection link to strengthen the detection of small targets. In addition, α-IoU is used to replace the original G-IoU method. The experimental results show that the mAP (mean Average Precision) of the improved algorithm is 8.1% higher than that of the original algorithm, and the detection speed also reaches 73.6Hz.

    參考文獻
    相似文獻
    引證文獻
引用本文

時(shí)造雄,茅正沖.基于改進(jìn)Yolo v5的花色布匹瑕疵檢測方法計算機測量與控制[J].,2023,31(4):56-62.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-11-05
  • 最后修改日期:2022-12-25
  • 錄用日期:2023-01-03
  • 在線(xiàn)發(fā)布日期: 2023-04-24
  • 出版日期:
文章二維碼
孟津县| 远安县| 成都市| 花垣县| 湖南省| 辽中县| 扶沟县| 永济市| 宣城市| 赣州市| 凤凰县| 河池市| 周宁县| 平山县| 尼玛县| 鱼台县| 陈巴尔虎旗| 汉阴县| 浑源县| 双鸭山市| 九江市| 砀山县| 乐山市| 云龙县| 博客| 晴隆县| 城市| 余姚市| 申扎县| 浮梁县| 漠河县| 昌邑市| 特克斯县| 溧阳市| 双城市| 滨州市| 景德镇市| 石家庄市| 武隆县| 塘沽区| 陵川县|