国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

改進(jìn)SegNet+CRF高分辨率遙感影像建筑物提取方法
DOI:
CSTR:
作者:
作者單位:

渤海大學(xué)信息科學(xué)技術(shù)學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

自然資源部測繪科學(xué)與地球空間信息技術(shù)重點(diǎn)實(shí)驗室開(kāi)放研究基金課題(2020-2-4);遼寧省教育廳重點(diǎn)攻關(guān)項目(LZ2020004)


Building extraction from high remote sensing images based on Improved SegNet+CRF Method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    將傳統的語(yǔ)義分割SegNet網(wǎng)絡(luò )用于高分辨率遙感影像的建筑物提取時(shí),分割的建筑物存在邊界模糊、精度較低、錯檢漏檢等問(wèn)題。為了解決上述問(wèn)題,提出一種改進(jìn)SegNet網(wǎng)絡(luò )+CRF語(yǔ)義分割方法。編碼階段的最低分辨率層引入空洞金字塔池化模型,通過(guò)并行的空洞卷積操作擴大特征提取的感受野;解碼階段構建特征金字塔實(shí)現特征多尺度融合,彌補上采樣過(guò)程中丟失的特征信息;最后,預測圖像送入全連接條件隨機場(chǎng)模型進(jìn)行后處理,優(yōu)化提取的建筑物邊緣。實(shí)驗表明,相較于原SegNet網(wǎng)絡(luò ),改進(jìn)方法的建筑物提取像素精度、召回率、平均交并比分別提高了0.48%、1.29%、2.36%。

    Abstract:

    When using the traditional semantic segmentation SegNet network to extract buildings from high-resolution remote sensing images, there are some problems, such as fuzzy boundary, low accuracy, error detection and missing detection. In order to solve the above problems, an improved SegNet+CRF semantic segmentation method is proposed. The SegNet model is improved by adopting Atrous Spatial Pyramid Pooling(ASPP) in the encoding stage to extract the feature maps of different receptive fields of an image through multiple hole convolutions with designed expansion rates. In the decoding stage, construct Feature Pyramid Networks(FPN) to realize multi-scale feature fusion and reduce feature detail loss. Further, the prediction images are image-processed based on the fully connected conditional random field(CRF)model to optimize the building edges. Experimental results in test areas are evaluated quantitively and visionally, which show that the improved model has the higher accuracy than that of the original SegNet deep learning model, with the average pixel accuracy, recall and average cross-over ratio by 0.48% , 1.29% and 2.36% respectively. The improved method is able to acquire buildings with clear and accurate boundaries, and can be extended for recognition applications of in remote sending images for urban mapping, management and planning.

    參考文獻
    相似文獻
    引證文獻
引用本文

趙昊罡,崔紅霞,張芳菲,顧海燕,穆瀟瑩.改進(jìn)SegNet+CRF高分辨率遙感影像建筑物提取方法計算機測量與控制[J].,2023,31(7):177-183.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-10-28
  • 最后修改日期:2022-12-05
  • 錄用日期:2022-12-06
  • 在線(xiàn)發(fā)布日期: 2023-07-12
  • 出版日期:
文章二維碼
临朐县| 郸城县| 松桃| 开封县| 新巴尔虎右旗| 视频| 浦东新区| 汶川县| 华阴市| 勐海县| 文水县| 合水县| 龙岩市| 会宁县| 稻城县| 永吉县| 柏乡县| 龙口市| 武冈市| 亚东县| 临夏市| 武安市| 肥西县| 遵义市| 萍乡市| 通化县| 麟游县| 贵港市| 依兰县| 晋城| 平和县| 东安县| 谢通门县| 大余县| 康保县| 金昌市| 运城市| 三原县| 启东市| 莱芜市| 肇庆市|