国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于改進(jìn)自適應卡爾曼濾波的電力大負荷預測與計費研究
DOI:
CSTR:
作者:
作者單位:

國電南瑞南京控制系統有限公司

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家重點(diǎn)研發(fā)計劃(2018YFB0905000)


Research on the prediction of power heavy load metering and charging based on improved adaptive kalman filter
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    電力大負荷預測是電力公司進(jìn)行高效電力系統規劃和運行的重要基礎。為了提高電力負荷預測精度進(jìn)而更加有效地估計電力計量與計費,創(chuàng )新地提出了一種基于改進(jìn)的自適應卡爾曼濾波(AKF,Adaptive Kalman Filter)的電力大負荷計量計費預估方法。分析了電力負荷預測研究現狀,針對傳統卡爾曼濾波算法不足,引入自適應遺忘因子對卡爾曼濾波算法進(jìn)行改進(jìn),建立數學(xué)模型、整定因子調整模型關(guān)鍵參數,得到電力大負荷數據的預測值,最終通過(guò)計量計費轉換公式得用電量以及電費計量預估值。仿真結果表明:基于A(yíng)EKF的電力大負荷計量預測方法的負荷預測結果與實(shí)際結果誤差小于1.35%,電力計費預測結果與實(shí)際結果相對誤差小于1.263%。應用實(shí)例證明:基于A(yíng)EKF的電力大負荷計量計費預估方法,能夠提高電力公司的調度效率12%,增加電費營(yíng)收5.3%—12.2%。

    Abstract:

    Large load forecasting is an important basis for efficient power system planning and operation of power companies. In order to improve the accuracy of power load forecasting and then estimate power metering and billing more effectively, a novel method of power bulk load metering and billing forecasting based on improved adaptive Kalman Filter (AKF) is proposed. The research status of power load forecasting is analyzed. Aiming at the shortage of traditional Kalman filtering algorithm, the adaptive forgetting factor is introduced to improve the Kalman filtering algorithm. The mathematical model and the key parameters of the setting factor adjustment model are established to obtain the predictive value of power load data. Finally, the power consumption and the predictive value of power charge metering are obtained through the metering and billing conversion formula. The simulation results show that the error between the prediction results and the actual results of the AEKF based power heavy load metering prediction method is less than 1.35%. The application example shows that the AEKF based method for estimating the metering and charging of large load of electric power can improve the dispatching efficiency of electric power companies by 12% and increase the revenue of electric charges by 5.3% - 12.2%.

    參考文獻
    相似文獻
    引證文獻
引用本文

隋仕偉,俞海猛,蹇照民,趙艷.基于改進(jìn)自適應卡爾曼濾波的電力大負荷預測與計費研究計算機測量與控制[J].,2023,31(6):149-155.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-09-30
  • 最后修改日期:2022-11-04
  • 錄用日期:2022-11-07
  • 在線(xiàn)發(fā)布日期: 2023-06-15
  • 出版日期:
文章二維碼
鹰潭市| 岳池县| 灵璧县| 噶尔县| 镇安县| 吴江市| 大港区| 博兴县| 定西市| 神木县| 浦城县| 南雄市| 鄂尔多斯市| 资阳市| 阳曲县| 龙海市| 甘洛县| 永州市| 泾源县| 闻喜县| 盈江县| 绥滨县| 阳春市| 曲麻莱县| 中卫市| 库车县| 临湘市| 招远市| 枝江市| 云龙县| 沙洋县| 合阳县| 彭泽县| 鹤峰县| 玛沁县| 和田市| 泽普县| 丹棱县| SHOW| 南郑县| 泽州县|