国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于改進(jìn)Yolov5s的無(wú)人機火災圖像檢測算法
DOI:
CSTR:
作者:
作者單位:

1.貴州理工學(xué)院航空航天工程學(xué)院;2.貴州理工學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家自然科學(xué)基金地區基金項目(61763005);貴州省科技計劃項目( 黔科合基礎[2017]1069);貴州省教育廳創(chuàng )新群體重大研究項目(黔教合KY字[2018]026);貴州省普通高等學(xué)校工程研究中心(黔教合KY字[2018]007);貴州省普通高等學(xué)校軍民融合人才培養基地( 黔科合基礎[2020]011);貴州省教育廳普通本科高校青年人才成長(cháng)項目(黔教合KY字[2022]349);貴州省基金基礎研究計劃項目(黔科合基礎-ZK[2022]172)。


UAV fire image detection algorithm based on improved Yolov5s
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了解決現有火災檢測算法模型復雜,實(shí)時(shí)性差,難以部署在無(wú)人機平臺的問(wèn)題,通過(guò)改進(jìn)Yolov5s算法對無(wú)人機火災圖像目標檢測進(jìn)行分析研究。利用搭載高清攝像頭的無(wú)人機設備獲取的火災圖像、公開(kāi)數據集、互聯(lián)網(wǎng)航拍視頻自主建立無(wú)人機火災圖像數據集;采用輕量化模型Yolov5s為基礎模型,MobileNetV3作為特征提取主干網(wǎng)絡(luò ),降低模型參數和計算量,解決實(shí)時(shí)性差和模型部署的問(wèn)題;模型頸部引入注意力模塊CBAM,綜合了通道和空間信息,加強網(wǎng)絡(luò )對高層次語(yǔ)義信息的傳遞;修改模型檢測頭部結構,增強小目標檢測能力。通過(guò)消融試驗對比分析各個(gè)模塊對模型的影響,與常見(jiàn)火災模型進(jìn)行對比分析,分析本文算法的優(yōu)劣。算法在自建數據上的平均精度達到78.2%,模型大小為6.7M,單幀(640×640)圖像處理時(shí)間為15.2ms。實(shí)驗結果表明,本文算法模型簡(jiǎn)單、實(shí)時(shí)性好,為火災檢測算法部署在無(wú)人機平臺奠定技術(shù)基礎。

    Abstract:

    In order to solve the problem that the existing fire detection algorithm model is complex, the real-time performance is poor, and it is difficult to deploy on the UAV platform, the UAV fire image target detection is analyzed and studied by improving yolov5s algorithm. Use the fire image, public data set and Internet aerial video obtained by the UAV equipment equipped with high-definition camera to independently establish the UAV fire image data set; The lightweight model yolov5s is used as the basic model and mobilenetv3 is used as the feature extraction backbone network to reduce the model parameters and computation, and solve the problems of poor real-time performance and model deployment; The attention module CBAM is introduced into the neck of the model, which integrates channel and spatial information to strengthen the transmission of high-level semantic information; Modify the head structure of the model to enhance the ability of small target detection. Through ablation test, the influence of each module on the model is compared and analyzed with common fire models, and the advantages and disadvantages of this algorithm are analyzed. The Average accuracy of the algorithm on the self built data is 78.2%, the model size is 6.7m, and the single frame is 640 × 640) the image processing time is 15ms. The experimental results show that the algorithm model in this paper is simple and has good real-time performance, which lays a technical foundation for the deployment of fire detection algorithm in UAV platform.

    參考文獻
    相似文獻
    引證文獻
引用本文

蘇小東,胡建興,陳霖周廷,高宏建.基于改進(jìn)Yolov5s的無(wú)人機火災圖像檢測算法計算機測量與控制[J].,2023,31(5):41-47.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-09-30
  • 最后修改日期:2022-11-01
  • 錄用日期:2022-11-02
  • 在線(xiàn)發(fā)布日期: 2023-05-19
  • 出版日期:
文章二維碼
廊坊市| 上蔡县| 大足县| 莫力| 开封县| 六枝特区| 邓州市| 四子王旗| 获嘉县| 达拉特旗| 吴忠市| 静安区| 荔浦县| 滕州市| 修水县| 汤原县| 临汾市| 汉源县| 襄垣县| 商洛市| 新安县| 称多县| 鸡西市| 田林县| 四川省| 东源县| 普宁市| 林甸县| 潼关县| 岚皋县| 新宁县| 南投县| 厦门市| 玉林市| 宁陕县| 广丰县| 嘉义市| 肥东县| 图木舒克市| 安图县| 大英县|