国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于改進(jìn)深度學(xué)習的風(fēng)機油污識別
DOI:
CSTR:
作者:
作者單位:

南京工程學(xué)院 人工智能產(chǎn)業(yè)技術(shù)研究院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

江蘇省高等學(xué)校自然科學(xué)基金面上項目(21KJB120005)


Fan oil contamination identification based on improved deep learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對風(fēng)機設備油液滲漏影響風(fēng)機正常運行亟需解決的對風(fēng)機設備油污的識別問(wèn)題,提出了一種基于改進(jìn)深度學(xué)習的風(fēng)機油污檢測方法。基于深度學(xué)習在目標檢測中的應用特點(diǎn),對目標檢測網(wǎng)絡(luò )YOLOv5n(You Only Look Once v5n)進(jìn)行改進(jìn),將原網(wǎng)絡(luò )中的非極大抑制(Non Maximum Suppression,NMS)替換為Soft-NMS,降低了網(wǎng)絡(luò )的誤檢率,添加CA (Coordinate Attention)注意力機制,增強了模型對目標的定位能力,改進(jìn)原網(wǎng)絡(luò )損失函數為α-IoU(Alpha- Intersection over Union)損失函數,提高了邊界框檢測的準確度。實(shí)驗結果表明:模型平均精度提升了8.1%,查全率提高了19.1%,網(wǎng)絡(luò )推理速度提高了28.6%。改進(jìn)后的模型能準確檢測風(fēng)機油污,有效解決了風(fēng)機實(shí)際運行中油液滲漏所帶來(lái)的問(wèn)題。

    Abstract:

    Aiming at the identification problem of oil pollution of fan equipment that needs to be solved urgently when the oil leakage of fan equipment affects the normal operation of fan equipment, a method of oil pollution detection of fan equipment based on improved deep learning is proposed. Based on the application characteristics of deep learning in object detection, the object detection network YOLOv5n (You Only Look Once v5n) is improved, the non maximum suppression (NMS) in the original network is replaced by Soft-NMS, the false detection rate of the network is reduced, the CA (Coordinate Attention) attention mechanism is added, and the positioning ability of the model to target is enhanced. Improved the original network loss function to the α-IoU (Alpha-Intersection over Union) loss function, improving the accuracy of bounding box detection. Experimental results show that the average accuracy of the model is improved by 8.1%, the totality rate is increased by 19.1%, and the network inference speed is increased by 28.6%. The improved model can accurately detect the oil pollution of the fan, and effectively solve the problem caused by oil leakage in the actual operation of the fan.

    參考文獻
    相似文獻
    引證文獻
引用本文

李家源,曹雪虹,焦良葆,張智堅,陳 燁.基于改進(jìn)深度學(xué)習的風(fēng)機油污識別計算機測量與控制[J].,2023,31(5):174-179.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-09-22
  • 最后修改日期:2022-10-24
  • 錄用日期:2022-10-24
  • 在線(xiàn)發(fā)布日期: 2023-05-19
  • 出版日期:
文章二維碼
鄂托克旗| 方城县| 东阳市| 南和县| 福泉市| 岑巩县| 绵阳市| 开原市| 卢氏县| 乳山市| 酒泉市| 长岛县| 肥西县| 永川市| 浏阳市| 宁城县| 长乐市| 拜城县| 慈溪市| 雅江县| 南投县| 邓州市| 黑水县| 镇宁| 温州市| 策勒县| 醴陵市| 巴彦淖尔市| 沙洋县| 陆河县| 杭锦后旗| 平度市| 曲松县| 郁南县| 曲水县| 德化县| 电白县| 新民市| 会理县| 东港市| 嘉祥县|