国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于改進(jìn)YOLOv5的電廠(chǎng)人員吸煙檢測
DOI:
CSTR:
作者:
作者單位:

南京工程學(xué)院 人工智能產(chǎn)業(yè)技術(shù)研究院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

江蘇省自然科學(xué)基金資助項目(BK20201042);江蘇省政策引導類(lèi)計劃項目(SZ2020007)


Smoking detection of power plant personnel based on improved YOLOv5
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    發(fā)電廠(chǎng)廠(chǎng)區內違規吸煙易導致火災、爆炸等事故,會(huì )帶來(lái)巨大損失。針對電廠(chǎng)內人員違規吸煙行為檢測精度不高的問(wèn)題,提出一種基于改進(jìn)YOLOv5s(You Only Look Once v5s)的電廠(chǎng)內人員違規吸煙檢測方法。該方法以YOLOv5s網(wǎng)絡(luò )為基礎,將YOLOv5s網(wǎng)絡(luò )C3模塊Bottleneck中的3×3卷積替換為多頭自注意力層以提高算法的學(xué)習能力;接著(zhù)在網(wǎng)絡(luò )中添加ECA(Efficient Channel Attention)注意力模塊,讓網(wǎng)絡(luò )更加關(guān)注待檢測目標;同時(shí)將YOLOv5s網(wǎng)絡(luò )的損失函數替換為SIoU(Scylla Intersection over Union),進(jìn)一步提高算法的檢測精度;最后采用加權雙向特征金字塔網(wǎng)絡(luò )(BiFPN,Bidirectional Feature Pyramid Network)代替原先YOLOv5s的特征金字塔網(wǎng)絡(luò ),快速進(jìn)行多尺度特征融合。實(shí)驗結果表明,改進(jìn)后算法吸煙行為的檢測精度為89.3%,與改進(jìn)前算法相比平均精度均值(mAP,mean Average Precision)提高了2.2%,檢測效果顯著(zhù)提升,具有較高應用價(jià)值。

    Abstract:

    For power plants, smoking in the factory area is easy to cause fire, explosion and other safety hazards, and improper handling will bring huge losses. Aiming at the problem that the detection accuracy of illegal smoking behavior of personnel in power plant is not high, this paper proposed an improved YOLOv5s (You Only Look Once V5S) target detection method to detect illegal smoking behavior of personnel in power plant. Based on the object detection algorithm YOLOv5s, the 3×3 convolution in the C3 module of YOLOv5s network is replaced by a Bottleneck self-attention layer to improve the learning ability of the algorithm. The Efficient Channel Attention module (ECA) is added to the network to make the network pay more Attention to the target to be detected. At the same time, the loss function of YOLOv5s algorithm was changed to Scylla Intersection over Union (SIoU) to further improve the detection accuracy of the algorithm. Finally, the weighted Bidirectional Feature Pyramid Network (BiFPN) is used to replace the original YOLOv5s Feature Pyramid Network to rapidly perform multi-scale Feature fusion. The experimental results show that, compared with the traditional YOLOv5s algorithm, the improved algorithm improves the detection accuracy of smoking behavior, and the mAP (mean Average Precision) is increased by 2.2%. The recognition effect is significantly improved, which proves the effectiveness of the new algorithm.

    參考文獻
    相似文獻
    引證文獻
引用本文

王彥生,曹雪虹,焦良葆,孫宏偉,高陽(yáng).基于改進(jìn)YOLOv5的電廠(chǎng)人員吸煙檢測計算機測量與控制[J].,2023,31(5):48-55.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-09-21
  • 最后修改日期:2022-10-24
  • 錄用日期:2022-10-24
  • 在線(xiàn)發(fā)布日期: 2023-05-19
  • 出版日期:
文章二維碼
临西县| 平和县| 利津县| 万宁市| 故城县| 陵川县| 阿图什市| 双牌县| 台安县| 黔江区| 丰台区| 石楼县| 兴国县| 郁南县| 伊宁县| 泽普县| 布尔津县| 中山市| 天等县| 漳浦县| 巴青县| 康定县| 盘锦市| 肇庆市| 郸城县| 宜章县| 革吉县| 南溪县| 陵水| 松潘县| 万源市| 天等县| 方正县| 遵义市| 山西省| 滕州市| 仁寿县| 苏尼特右旗| 汕头市| 灵璧县| 夹江县|