国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于自適應并聯(lián)結構神經(jīng)網(wǎng)絡(luò )的交通流量預測
DOI:
CSTR:
作者:
作者單位:

河海大學(xué)

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:


A Neural Network with Adaptive Parallel Structure and Its Application to Traffic Flow Prediction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    由于現有優(yōu)化算法在全局優(yōu)化方面的局限性,導致神經(jīng)網(wǎng)絡(luò )需要多次訓練才能獲得滿(mǎn)意的結果。為了解決神經(jīng)網(wǎng)絡(luò )訓練中的一致性問(wèn)題,文章提出了一種自適應并聯(lián)結構神經(jīng)網(wǎng)絡(luò )(Adaptive Parallel Structure Neural Network, APSNN)。APSNN由多個(gè)神經(jīng)網(wǎng)絡(luò )單元并聯(lián)組成,在訓練過(guò)程中,采用常規優(yōu)化算法對各神經(jīng)網(wǎng)絡(luò )單元進(jìn)行訓練。神經(jīng)網(wǎng)絡(luò )單元的訓練樣本由上一級神經(jīng)網(wǎng)絡(luò )單元的訓練殘差構成,通過(guò)訓練殘差在各神經(jīng)網(wǎng)絡(luò )單元中的單向傳遞,實(shí)現訓練殘差的逐級減少。神經(jīng)網(wǎng)絡(luò )根據訓練殘差,決定是否進(jìn)行神經(jīng)網(wǎng)絡(luò )單元級聯(lián)和結構擴張,從而保證訓練結果的一致性。文章對5種非線(xiàn)性函數進(jìn)行了神經(jīng)網(wǎng)絡(luò )逼近測試。與BP神經(jīng)網(wǎng)絡(luò )相比較,APSNN在50次不同初始條件下,訓練精度十分穩定,具有很好的一致性。為了實(shí)現對交通流量預測,文章將APSNN與BP神經(jīng)網(wǎng)絡(luò )和小波神經(jīng)網(wǎng)絡(luò )進(jìn)行了對比研究,結果表明:APSNN的預測總體標準差均小于BP神經(jīng)網(wǎng)絡(luò )和小波神經(jīng)網(wǎng)絡(luò ),交通流量的預測偏差較BP神經(jīng)網(wǎng)絡(luò )和小波神經(jīng)網(wǎng)絡(luò )分別降低2.7%和9.7%。

    Abstract:

    Due to the limitations of existing optimization algorithms in global optimization, neural networks require multiple trainings to obtain satisfactory results. In order to solve the consistency problem of neural network training, this paper proposes an adaptive parallel structure neural network (APSNN). APSNN consists of multiple neural network units in parallel, and each neural network unit is trained using conventional optimization algorithms during the training process. The training samples of the neural network unit are composed of the training residuals of the previous neural network unit. Through the one-way transmission of the training residuals in each neural network unit, the training residuals are gradually reduced. According to the training residuals, the neural network decides whether to cascade the neural network units and expand the structure, so as to ensure the consistency of the training results. The neural network approximation test is carried out on five nonlinear functions in this paper. Compared with BP neural network, APSNN has very stable training accuracy and good consistency under 50 different initial conditions. In order to predict traffic flow, this paper compares APSNN with BP neural network and wavelet neural network. The results show that the overall standard deviation of APSNN prediction is smaller than that of BP neural network and wavelet neural network, and the prediction deviation of traffic flow is 2.7% and 9.7% lower than that of BP neural network and wavelet neural network, respectively.

    參考文獻
    相似文獻
    引證文獻
引用本文

楊啟文,李月,吳君娜,陳俊風(fēng),薛云燦.基于自適應并聯(lián)結構神經(jīng)網(wǎng)絡(luò )的交通流量預測計算機測量與控制[J].,2023,31(4):42-48.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-09-05
  • 最后修改日期:2022-10-12
  • 錄用日期:2022-10-12
  • 在線(xiàn)發(fā)布日期: 2023-04-24
  • 出版日期:
文章二維碼
阳春市| 广灵县| 茶陵县| 驻马店市| 济南市| 孝感市| 高青县| 保康县| 嵊泗县| 兴宁市| 枞阳县| 伊宁市| 日喀则市| 贺州市| 阿克陶县| 孝昌县| 二手房| 灵石县| 揭东县| 福海县| 托里县| 维西| 新宁县| 宜宾县| 奉节县| 肇庆市| 宣化县| 满洲里市| 扎囊县| 古交市| 邵东县| 临漳县| 信丰县| 建瓯市| 洛阳市| 江川县| 平果县| 庆元县| 兴安县| 彭山县| 广灵县|