国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于嵌入式平臺的航拍目標智能識別
DOI:
CSTR:
作者:
作者單位:

南京航空航天大學(xué) 自動(dòng)化學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP391

基金項目:

國家自然科學(xué)基金(61973160,62073161),江蘇省自然科學(xué)基金(BK20210298)


The Target Intelligent Recognition of Aerial Photography Images Based on Embedded Platform
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    基于多旋翼無(wú)人機實(shí)現目標識別具有成本低、靈活性高的優(yōu)點(diǎn),能夠對近地低空目標進(jìn)行高強度監測,在國防軍事領(lǐng)域和民用領(lǐng)域具有巨大的應用前景;但無(wú)人機機載計算機常使用功耗小、重量輕、可靠性高的嵌入式設備,該類(lèi)設備算力有限,難以實(shí)時(shí)運行現有深度學(xué)習目標識別算法,因此研究深度學(xué)習航拍小目標識別技術(shù)在嵌入式設備中實(shí)時(shí)運行有重要意義;基于YOLOv4設計了適用于無(wú)人機俯視小目標的輕量化網(wǎng)絡(luò ),并基于BN層 系數對網(wǎng)絡(luò )進(jìn)行剪枝,采用了TensorRT對算法進(jìn)行硬件加速;同時(shí),制作了小型軍用目標數據集,基于該數據集,在機載嵌入式運算平臺上對原始YOLOv4算法和改進(jìn)的算法分別進(jìn)行了測試,改進(jìn)算法與原YOLOv4相比,準確率提升了2.3%,速度提升了3.3倍。

    Abstract:

    Target recognition and tracking based on multi-rotor UAVs has the advantages of low cost and high flexibility. It can carry out high-intensity monitoring of low-ground and low-altitude targets. It has a huge application prospect in the national defense and military fields and civilian fields. Embedded devices with low power consumption, light weight and high reliability are often used in UAV airborne computers. The computing power of such devices is limited, and the existing target recognition algorithms based on deep learning are difficult to run on such devices in real time. Therefore, it is of great significance to research on the technology of aerial small target recognition based on deep learning and running real time in embedded equipment. A lightweight YOLOv4 backbone network which suitable for overlooking small targets is improved and designed, and the network is pruned based on the γ coefficient of the BN layer, and accelerated using TensorRT. Besides, an image dataset of military target is produced, and it is used for testing the improved algorithm on the airborne embedded computing platform. Compared with the original YOLOv4, the accuracy of the improved algorithm is increased by 2.3% and the speed is increased by 3.3 times.

    參考文獻
    相似文獻
    引證文獻
引用本文

田祥瑞,賈茚鈞,羅欣,尹婕,徐鵬.基于嵌入式平臺的航拍目標智能識別計算機測量與控制[J].,2022,30(11):153-160.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-08-05
  • 最后修改日期:2022-09-01
  • 錄用日期:2022-09-01
  • 在線(xiàn)發(fā)布日期: 2022-11-17
  • 出版日期:
文章二維碼
景谷| 邢台县| 格尔木市| 浪卡子县| 南安市| 于都县| 七台河市| 朝阳市| 大渡口区| 怀柔区| 南昌市| 万源市| 两当县| 隆化县| 宁河县| 平顺县| 会泽县| 婺源县| 金湖县| 凌源市| 内黄县| 克拉玛依市| 弥渡县| 荃湾区| 米林县| 盱眙县| 东港市| 中牟县| 奎屯市| 平定县| 义马市| 铜鼓县| 错那县| 阿图什市| 门头沟区| 马龙县| 晋中市| 化德县| 巴彦县| 德格县| 乌拉特前旗|