国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

改進(jìn)CNN和Bi-LSTM的集成化裝備故障檢測研究
DOI:
CSTR:
作者:
作者單位:

1.武警工程大學(xué) 研究生大隊;2.武警工程大學(xué) 信息工程學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家自然科學(xué)(大型液體運載火箭智能健康監測自愈控制與預測維護61833016)


Research on integrated Equipment Fault Detection of improved CNN and BI-LSTM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    集成化裝備的故障檢測和健康管理(PHM)已成為裝備領(lǐng)域研究的重點(diǎn),但是由于其集成度高,結構復雜,綜合性強等特點(diǎn),采用常規的檢測方法常面臨信息多源異構,體量浩大,且實(shí)時(shí)性難以保證的問(wèn)題,不僅消耗大量的人力物力,而且需要極強的數據分析及管控能力。為保證準確性、實(shí)時(shí)性和有效性的統一,研究提出一種基于CNN和Bi-LSTM(雙向長(cháng)短記憶網(wǎng)絡(luò ),Bidirectional short and long memory network)及其優(yōu)化算法的故障檢測算法,構建了Bi-LSTM-CNN-FCM模型,并通過(guò)田納西-伊斯曼化工過(guò)程數據集進(jìn)行驗證。在實(shí)驗過(guò)程中通過(guò)觀(guān)察不同激活函數對模型精度和效果的影響選擇合適的激活函數,最終確定在卷積層使用tanh激活函數,在全連接層使用relu激活函數。在確定激活函數后對模型不斷優(yōu)化,在模型末端加入FCM聚類(lèi)算法,提高了故障檢測分類(lèi)的準確率,最后以準確率和損失值為依據,通過(guò)與單一的LSTM模型,CNN模型和LSTM-CNN模型對比,證明該模型的優(yōu)越性。該模型使得故障檢測的準確率提升至98.25%,損失值減少至0.0104,在性能上明顯優(yōu)于其他模型。

    Abstract:

    Integrated equipment fault detection and health management (PHM) has become the focus of the researches on the equipment, but because of its high integration, complicated structure, the characteristics of comprehensive, the conventional detection method often face a multi-source heterogeneous information, size, and difficult problems to ensure real-time performance, not only consume large amounts of resources, It also requires strong data analysis and control skills. A fault detection algorithm based on CNN and BI-LSTM (Bidirectional Short and Long Memory Network) and its optimization algorithm is proposed to ensure the unity of accuracy, real-time and validity. Bi-lstm-cnn-fcm model was constructed and verified by tennessee-Eastman chemical process dataset. During the experiment, appropriate activation functions were selected by observing the influence of different activation functions on the model accuracy and effect, and finally tanH activation function was determined to be used in the convolution layer and Relu activation function was used in the full connection layer. After the activation function was determined, the model was continuously optimized, and FCM clustering algorithm was added at the end of the model to improve the accuracy of fault detection and classification. Finally, based on the accuracy and loss value, the superiority of the model was proved by comparing with the single LSTM model, CNN model and LSTM-CNN model. This model improves the accuracy of fault detection to 98.25% and reduces the loss value to 0.0104, which is obviously superior to other models in performance.

    參考文獻
    相似文獻
    引證文獻
引用本文

鄭樂(lè )輝,孫君杰,牛潤,黃瑩.改進(jìn)CNN和Bi-LSTM的集成化裝備故障檢測研究計算機測量與控制[J].,2022,30(11):52-58.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-07-07
  • 最后修改日期:2022-07-31
  • 錄用日期:2022-08-01
  • 在線(xiàn)發(fā)布日期: 2022-11-17
  • 出版日期:
文章二維碼
类乌齐县| 平邑县| 乌审旗| 集安市| 右玉县| 扶沟县| 临城县| 客服| 台北市| 介休市| 衡阳县| 富蕴县| 永济市| 黄龙县| 迭部县| 丹巴县| 灯塔市| 吉首市| 丰城市| 渭南市| 夹江县| 深水埗区| 凤阳县| 康保县| 平乡县| 磐石市| 玛沁县| 龙海市| 阿克苏市| 南丹县| 镇宁| 武宁县| 嘉义市| 铜山县| 安阳县| 察雅县| 无极县| 玉门市| 樟树市| 资兴市| 贺兰县|