国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于動(dòng)態(tài)遺忘因子最小二乘與EKF的電池SOC估計
DOI:
CSTR:
作者:
作者單位:

長(cháng)安大學(xué)電子與控制工程學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

陜西省重點(diǎn)研發(fā)計劃項目(2019ZDLGY15-04-02)


Battery SOC Estimation based on Dynamic Forgetting Factor Least Squares and EKF
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    電池荷電狀態(tài)SOC(State Of Charge)作為電池管理系統中尤為重要的一部分,其準確估計成為鋰離子電池研究的重點(diǎn)。為了提高動(dòng)態(tài)工況下的SOC估計精度,對鋰離子電池等效模型進(jìn)行分析,基于A(yíng)IC(赤池信息)準則確定二階RC電路為等效電路模型,使用遞推最小二乘算法對模型參數進(jìn)行在線(xiàn)辨識,為提高辨識精度,提出了改進(jìn)帶動(dòng)態(tài)遺忘因子遞推最小二乘算法,對算法加入遺忘因子,通過(guò)電壓結果誤差實(shí)時(shí)動(dòng)態(tài)調整算法遺忘因子取值。將遞推最小二乘算法和含動(dòng)態(tài)遺忘因子最小二乘算法分別與擴展卡爾曼濾波(EKF)算法進(jìn)行SOC聯(lián)合估計,并對比其預測效果,結果表明含有動(dòng)態(tài)遺忘因子最小二乘與EKF聯(lián)合估計模型具有更高的精度和魯棒性。

    Abstract:

    As a particularly important part of the battery management system, the accurate estimation of the battery SOC (State Of Charge) has become the focus of lithium-ion battery research. In order to improve the SOC estimation accuracy under dynamic conditions, the equivalent model of lithium-ion batteries is analyzed, the second-order RC circuit is determined as the equivalent circuit model based on the AIC (Akaike Information) criterion, and the recursive least squares algorithm was used to identify the model parameters online, and in order to improve the identification accuracy, an improved least squares algorithm with dynamic forgetting factor was proposed, the forgetting factor is added to the recursive least squares algorithm, and the forgetting factor of the algorithm is dynamically adjusted in real time through the voltage result error. The recursive Least Squares algorithm and the Least Squares algorithm with dynamic forgetting factor are combined with the extended Kalman filtering (EKF) algorithm for SOC joint estimation respectively, compared the prediction results, the results showed that the joint estimation model containing the least squares with dynamic forgetting factor and EKF has higher accuracy and robustness.

    參考文獻
    相似文獻
    引證文獻
引用本文

馬福榮,李演明,杜浩,焦振,邱彥章.基于動(dòng)態(tài)遺忘因子最小二乘與EKF的電池SOC估計計算機測量與控制[J].,2023,31(1):167-173.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-05-31
  • 最后修改日期:2022-06-24
  • 錄用日期:2022-06-24
  • 在線(xiàn)發(fā)布日期: 2023-01-16
  • 出版日期:
文章二維碼
阿合奇县| 克山县| 辽阳县| 泗阳县| 依兰县| 九江市| 黄冈市| 龙江县| 神池县| 孟连| 昭通市| 万安县| 江油市| 荥阳市| 平谷区| 津市市| 平江县| 青河县| 德清县| 安福县| 那曲县| 苗栗市| 柯坪县| 康保县| 沧州市| 兰州市| 宿州市| 陈巴尔虎旗| 托克托县| 大埔区| 莱西市| 大同县| 尉氏县| 大悟县| 青神县| 翼城县| 鄂州市| 佳木斯市| 新疆| 福安市| 寻甸|