国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于改進(jìn)圖注意機制的網(wǎng)絡(luò )嵌入方法研究及應用
DOI:
CSTR:
作者:
作者單位:

西安建筑科技大學(xué)草堂校區

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家自然科學(xué)基金項目(面上項目,重點(diǎn)項目,重大項目),陜西省自然科學(xué)基金, 陜西省住房城鄉建設科技計劃項目


Research and Application of Network Embedding Method Based on Improved Graph Attention Mechanism
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    網(wǎng)絡(luò )已被廣泛用作抽象現實(shí)世界系統以及組織實(shí)體之間關(guān)系的數據結構;網(wǎng)絡(luò )嵌入模型是將網(wǎng)絡(luò )中的節點(diǎn)映射為連續向量空間表示的強大工具;基于圖卷積(Graph convolutional neural, GCN)的網(wǎng)絡(luò )嵌入方法因受其模型迭代過(guò)程參數隨機優(yōu)化和聚合函數的影響,容易造成原始節點(diǎn)特征信息丟失的問(wèn)題;為有效提升網(wǎng)絡(luò )嵌入效果,針對于圖神經(jīng)網(wǎng)絡(luò )模型在網(wǎng)絡(luò )嵌入中節點(diǎn)表征學(xué)習的局限性,提出了一種基于二階鄰域基數保留策略的圖注意力網(wǎng)絡(luò )SNCR-GAT(Second-order Neighborhood Cardinality Retention strategy Graph attention network),通過(guò)聚合二階鄰域特征基數的方式,解決網(wǎng)絡(luò )節點(diǎn)潛在特征學(xué)習過(guò)程中重要信息保留問(wèn)題;通過(guò)在節點(diǎn)分類(lèi)和可視化兩個(gè)網(wǎng)絡(luò )嵌入應用任務(wù)上進(jìn)行實(shí)驗,結果表明,SNCR-GAT模型在網(wǎng)絡(luò )嵌入上的性能表現相比較基準方法更具優(yōu)越性。

    Abstract:

    Networks have been widely used as data structures for abstracting real-world systems and for organizing relationships between entities. The network embedding model is a powerful tool to map the nodes in the network into a continuous vector space representation. The network embedding method based on Graph convolutional neural (GCN) is easily affected by the random optimization of parameters in the model iteration process and the aggregation function. The problem of loss of original node feature information. In order to effectively improve the network embedding effect, a graph attention network based on the second-order neighborhood cardinality retention strategy is proposed for the limitation of the graph neural network model in the node representation learning in the network embedding. (SNCR-GAT, Second-order Neighborhood Cardinality Retention strategy Graph attention network), by aggregating the second-order neighborhood feature cardinality, it solves the problem of important information retention in the process of latent feature learning of network nodes; by classifying and visualizing two networks in nodes Experiments are carried out on the actual task of embedding, and the results show that the performance of the SNCR-GAT model on network embedding is more superior than the baseline method.

    參考文獻
    相似文獻
    引證文獻
引用本文

韓津津,李智杰,李昌華,張頡.基于改進(jìn)圖注意機制的網(wǎng)絡(luò )嵌入方法研究及應用計算機測量與控制[J].,2022,30(9):207-212.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-04-27
  • 最后修改日期:2022-05-24
  • 錄用日期:2022-05-24
  • 在線(xiàn)發(fā)布日期: 2022-09-16
  • 出版日期:
文章二維碼
张家界市| 亚东县| 白水县| 勃利县| 扶绥县| 清远市| 合水县| 聂拉木县| 眉山市| 宕昌县| 饶河县| 商水县| 济源市| 佛山市| 四子王旗| 惠水县| 安岳县| 平泉县| 湘西| 静海县| 古蔺县| 博乐市| 镇赉县| 陇川县| 郎溪县| 益阳市| 灌阳县| 永康市| 米泉市| 旬阳县| 莫力| 漳浦县| 白朗县| 阿鲁科尔沁旗| 石嘴山市| 扎兰屯市| 永年县| 富民县| 将乐县| 台北市| 淮滨县|