国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于PCA-LDA算法的模擬電路復雜故障在線(xiàn)診斷研究
DOI:
CSTR:
作者:
作者單位:

廣州廣電計量檢測股份有限公司

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP39

基金項目:


Research on Diagnosing Complex Analog Circuit Failure on Line Based on An Algorithm of Coupling PCA and LDA
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    模擬電路在出現多個(gè)元器件同時(shí)故障情形時(shí),由于容差多樣、耦合關(guān)系復雜等因素,難以對其進(jìn)行準確在線(xiàn)故障診斷。對模擬電路的在線(xiàn)故障診斷過(guò)程進(jìn)行了定量數學(xué)描述,提出了幅頻特征值獲取方法,將PCA方法和LDA方法相結合,構建屬性協(xié)方差矩陣、類(lèi)間散度矩陣、類(lèi)內散度矩陣,對模擬電路的復雜故障樣本數據進(jìn)行降維與分類(lèi),采用BP神經(jīng)網(wǎng)絡(luò )對樣本數據集與故障模式集進(jìn)行準確匹配。實(shí)驗結果表明,論文提出的方法對數據分類(lèi)降維有效、診斷結果正確,樣本數據維度由31降到3,故障分類(lèi)準確率達到100%,較LDA、PCA、KPCA和KPCA-LDA等其它四種方法,本文方法的指標更優(yōu)。

    Abstract:

    It was difficult to diagnose the complex analog circuit on line on the situation which some elements failed because of its various tolerance error and multiplex coupling relationship. Firstly, the quantitative mathematics process of diagnosing the complex analog circuit was given in this paper, and the method of picking voltage-frequency characteristic value was proposed, too. Secondly, the coupling method of principal component analysis and linear discriminant analysis was applied, thus the attribute covariance matrix, the between class scatter matrix and the within class scatter matrix were found. In this way the failure sample dimensions of the complex analog circuit were depressed. Finally, the failure data were precisely matched with the failure modes by applying the back propagation neural network. It was proved by the experiment result that the method of this paper was effective in the domain of depressing samples, classifying data and diagnosing failure. The accurate rate of classifying failure is a hundred percent,and the data sample dimension was reduced from 31 to 3. Compared with other four methods, such as discriminant analysis, principal component analysis and kernelized principal component analysis, the method of this paper was superior to these in respect of classifying data, depressing samples, etc.

    參考文獻
    相似文獻
    引證文獻
引用本文

歐陽(yáng)潔.基于PCA-LDA算法的模擬電路復雜故障在線(xiàn)診斷研究計算機測量與控制[J].,2022,30(11):11-16.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-04-04
  • 最后修改日期:2022-04-25
  • 錄用日期:2022-04-26
  • 在線(xiàn)發(fā)布日期: 2022-11-17
  • 出版日期:
文章二維碼
乌恰县| 平塘县| 集安市| 福清市| 西华县| 余姚市| 孟村| 余江县| 清水县| 乐昌市| 白银市| 南川市| 云南省| 迭部县| 陆川县| 高密市| 竹山县| 绍兴市| 阿图什市| 洱源县| 凤阳县| 洪湖市| 资讯| 旬阳县| 淮安市| 邛崃市| 礼泉县| 怀安县| 阿拉善左旗| 诸城市| 盱眙县| 舟山市| 正宁县| 桐城市| 揭东县| 乌兰浩特市| 万源市| 焉耆| 文安县| 建水县| 宜兴市|