国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于CNN-LSTM-PSO的私有云故障檢測
DOI:
CSTR:
作者:
作者單位:

上海大學(xué)通信學(xué)院特種光纖與光接入網(wǎng)重點(diǎn)實(shí)驗室

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP393

基金項目:

國家重點(diǎn)研發(fā)計劃(2021YFB2900800);上海市科委項目(20511102400)、(20ZR1420900);高等學(xué)校學(xué)科創(chuàng )新引智計劃(111)(D20031)。


LSTM Private cloud fault detection based on CNN-LSTM-PSO
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    有效對私有云系統進(jìn)行故障檢測對于保障IT系統穩定性及開(kāi)展可靠性信息活動(dòng)具有重要的實(shí)際意義。為此從私有云系統的歷史趨勢數據出發(fā),將卷積網(wǎng)絡(luò )(CNN)和長(cháng)短期記憶(LSTM)循環(huán)神經(jīng)網(wǎng)絡(luò )結合,提出了基于粒子群優(yōu)化算法(PSO)的CNN-LSTM-PSO的混合模型,實(shí)現對私有云的故障檢測。采用X11算法等技術(shù)對數據進(jìn)行預處理,使用CNN網(wǎng)絡(luò )提取監控指標時(shí)序數據的相關(guān)特征信息,并通過(guò)訓練LSTM網(wǎng)絡(luò )參數建立CNN-LSTM預測模型,設計了PSO算法對預測模型進(jìn)行參數選優(yōu),減小預測誤差,并以高斯正態(tài)分布確定閾值范圍,實(shí)現故障的精準檢測。通過(guò)和傳統單一預測模型以及現有的一些組合預測模型的對比,CNN-LSTM-PSO模型預測后結果的均方根誤差、平均絕對誤差和平均百分比誤差都低于其余模型。實(shí)驗結果驗證了模型在預測效果上具備更高的精度和更快的預測速度,在私有云的故障檢測中精確性和實(shí)時(shí)性都具有良好效果。

    Abstract:

    Effective fault detection of private cloud systems is of great practical significance to ensure the stability of IT systems and to carry out reliability information activities. To this end, starting from the historical trend data of private cloud systems, a hybrid model of CNN-LSTM-PSO based on particle swarm optimization (PSO) is proposed by combining convolutional network (CNN) and long short-term memory (LSTM) recurrent neural network., to realize fault detection of private cloud. The X11 algorithm and other technologies are used to preprocess the data, the CNN network is used to extract the relevant feature information of the time series data of the monitoring indicators, and the CNN-LSTM prediction model is established by training the LSTM network parameters, and the PSO algorithm is designed to optimize the parameters of the prediction model and reduce the Small prediction error, and the threshold range is determined by Gaussian normal distribution to achieve accurate fault detection. Compared with the traditional single prediction model and some existing combined prediction models, the root mean square error, mean absolute error and mean percentage error of the predicted results of the CNN-LSTM-PSO model are lower than those of the other models. The experimental results verify that the model has higher accuracy and faster prediction speed in prediction effect, and has good results in both accuracy and real-time performance in fault detection of private cloud.

    參考文獻
    相似文獻
    引證文獻
引用本文

曹炳堯,柏杰,侯佩儒.基于CNN-LSTM-PSO的私有云故障檢測計算機測量與控制[J].,2022,30(8):76-82.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-03-31
  • 最后修改日期:2022-04-18
  • 錄用日期:2022-04-18
  • 在線(xiàn)發(fā)布日期: 2022-08-25
  • 出版日期:
文章二維碼
石河子市| 晋州市| 临泉县| 镇安县| 城固县| 温州市| 潞西市| 湛江市| 建德市| 全椒县| 石泉县| 巍山| 鄂托克旗| 平阴县| 肃北| 壤塘县| 石泉县| 宣恩县| 平武县| 江源县| 萍乡市| 佛山市| 兴安盟| 五河县| 上饶县| 邵阳县| 恩施市| 桐城市| 无锡市| 洛宁县| 涟源市| 建宁县| 达日县| 建水县| 汉川市| 溧水县| 山阴县| 防城港市| 新津县| 昭觉县| 读书|