国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于改進(jìn)Mosaic數據增強和特征融合的Logo檢測
DOI:
CSTR:
作者:
作者單位:

西安理工大學(xué) 自動(dòng)化與信息工程學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP391

基金項目:

陜西省科技計劃重點(diǎn)項目(2017ZDCXL-GY-05-03)


Logo Detection Based on Improved Mosaic Data Enhancement and Feature Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    近年來(lái),Logo檢測在知識產(chǎn)權保護和產(chǎn)品品牌管理等領(lǐng)域得到了廣泛應用。針對Logo檢測中的復雜背景和多尺度問(wèn)題,提出了一種改進(jìn)Mosaic數據增強和特征融合的Logo檢測算法。將六張原始圖片隨機翻轉、縮放和拼接構成合成圖像,與單張圖像和由四張原始圖片合成的圖像一起作為YOLOv4模型的訓練輸入,并確定三種輸入形式的最優(yōu)比例,同時(shí)使用一種新的訓練策略,改進(jìn)的Mosaic數據增強方法豐富了Logo對象的尺度和背景,使模型更好地學(xué)習全局和局部特征;在路徑整合網(wǎng)絡(luò )(PANet)的基礎上引入跨層連接、重復堆疊、直接連接和加權特征融合等操作,改進(jìn)的PANet擴大了模型感受野,增強了模型的多尺度特征表達能力。實(shí)驗結果表明,提出的MP-YOLOv4算法在減小21.7%模型大小的同時(shí), IoU(Intersection of Union)等于0.5時(shí)的平均精度上達到了67.4%,較YOLOv4提高了2.4%,同時(shí)在多尺度目標上的檢測性能得到了改善。

    Abstract:

    Logo detection has been widely used in intellectual property protection and product brand management in recent years. Aiming at the complex background and multi-scale problems in Logo detection, a Logo detection algorithm based on improved Mosaic data enhancement and feature fusion was proposed. Six original images were randomly flipped, scaled and combined to form a composite image, which was used as the training input of YOLOv4 model together with single image and a composite of four original images, and the optimal proportion of the three input was determined. Meanwhile, a new training strategy was used. The improved Mosaic data enhancement further enriched the scale and context of Logo objects, enabling the model to learn the global and local features better. Based on the path integration network (PANet), some operations such as cross-layer connection, repeated stacking, direct connection and weighted feature fusion were introduced. The improved PANet enlarged the receptive field of the model and enhanced the multi-scale feature expression ability of the model. Experimental results show that the proposed MP-YOLOv4 algorithm can reduce the model size by 21.7% and reach 67.4% average precision when IoU(Intersection of Union) equals 0.5, which is 2.4% higher than YOLOv4. At the same time, the detection performance of multi-scale targets is improved.

    參考文獻
    相似文獻
    引證文獻
引用本文

陳翠琴,范亞臣,王林.基于改進(jìn)Mosaic數據增強和特征融合的Logo檢測計算機測量與控制[J].,2022,30(10):188-194.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-03-22
  • 最后修改日期:2022-04-20
  • 錄用日期:2022-04-20
  • 在線(xiàn)發(fā)布日期: 2022-11-01
  • 出版日期:
文章二維碼
延津县| 同心县| 砀山县| 平和县| 耿马| 咸宁市| 苏州市| 土默特右旗| 杨浦区| 佛教| 宝坻区| 涿州市| 西贡区| 西吉县| 会理县| 澄江县| 巫山县| 通州市| 剑阁县| 湟源县| 五常市| 剑河县| 抚顺县| 新巴尔虎左旗| 延安市| 黄骅市| 垣曲县| 武汉市| 乌拉特后旗| 宁河县| 德化县| 奇台县| 延寿县| 宣恩县| 大埔县| 旬邑县| 九台市| 天气| 嘉鱼县| 辽中县| 昌都县|