国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

改進(jìn)Xception模型的乳腺鉬靶圖像識別研究
DOI:
CSTR:
作者:
作者單位:

太原理工大學(xué)

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

山西省自然科學(xué)基金(201901D111093);山西省重點(diǎn)研發(fā)項目(201803D421047)


Research on Mammograms Recognition With Improved Xception Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    乳腺X線(xiàn)攝影技術(shù)是早期發(fā)現乳腺癌的主要方法,但其結果很大程度上受放射科醫師臨床診斷經(jīng)驗的限制;基于卷積神經(jīng)網(wǎng)絡(luò )對乳腺鉬靶圖像自動(dòng)分類(lèi)的研究可以為放射科醫師臨床診斷提供意見(jiàn),然而乳腺癌腫塊邊緣模糊且良惡性腫塊特征差異較小,分類(lèi)任務(wù)面臨重重挑戰;為了提高乳腺鉬靶圖像分類(lèi)的準確率,提出一種基于Xception模型的改進(jìn)優(yōu)化算法,改進(jìn)模型中的殘差連接模塊,并嵌入Squeeze-and-excitation(SE)注意力機制對模型進(jìn)行優(yōu)化;采用優(yōu)化后的Xception模型并結合遷移學(xué)習算法進(jìn)行乳腺鉬靶圖像特征提取,并優(yōu)化全連接層網(wǎng)絡(luò )進(jìn)行圖像分類(lèi),使用公開(kāi)的乳腺癌圖像數據庫CBIS-DDSM進(jìn)行實(shí)驗,將乳腺鉬靶圖像自動(dòng)分為良性和惡性;實(shí)驗結果表明該方法可以有效提高模型的分類(lèi)效果,準確率和AUC分別達到了97.46%和99.12%。

    Abstract:

    Mammography is the primary method for the early detection of breast cancer, but the results is largely limited by the radiologist's experience in clinical diagnosis. The study of automatic classification of mammography images based on convolutional neural network can provide advice for radiologists in clinical diagnosis, however the classification task of mammography images faced with many challenges due to the fuzzy edge and small difference between benign and malignant tumors. In order to improve the accuracy of mammography classification, an improved optimization algorithm based on Xception model was proposed, the residual connection module in the model is improved, and Squeeze-and-excitation(SE) attention mechanism is embedded to optimize the model. The optimized Xception model combined with transfer learning algorithm was used to feature extraction of mammography images, and the full-connection layer network was optimized for image classification. Experiments were conducted on the open data set CBIS-DDSM, and mammography images were automatically divided into benign and malignant. The experimental results showed that this method could effectively improve the classification effect of the model, and the accuracy and AUC reached 97.46% and 99.12%, respectively.

    參考文獻
    相似文獻
    引證文獻
引用本文

李錦通,安建成,王悅,曹銳.改進(jìn)Xception模型的乳腺鉬靶圖像識別研究計算機測量與控制[J].,2022,30(8):189-196.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-03-08
  • 最后修改日期:2022-04-06
  • 錄用日期:2022-04-06
  • 在線(xiàn)發(fā)布日期: 2022-08-25
  • 出版日期:
文章二維碼
乐亭县| 界首市| 得荣县| 电白县| 汉中市| 东乡族自治县| 平和县| 长沙县| 汉寿县| 琼海市| 青州市| 外汇| 新乐市| 清镇市| 松滋市| 成安县| 讷河市| 蓝田县| 娄烦县| 濮阳县| 荥经县| 盘山县| 崇明县| 六安市| 长泰县| 扎鲁特旗| 三亚市| 五莲县| 昌平区| 始兴县| 南汇区| 宜章县| 洪江市| 安徽省| 澄迈县| 泽库县| 武邑县| 宁阳县| 越西县| 皮山县| 金乡县|