国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于殘差連接LSTM的雷達目標分類(lèi)識別方法
DOI:
CSTR:
作者:
作者單位:

中國電子科技集團公司第五十四研究所

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

河北省重大科技成果轉化專(zhuān)項(20285401Z)


Radar Target Classification and Recognition Method Based on Residual Connected LSTM

Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    近年來(lái)隨著(zhù)多種小型智能探測設備的出現(如無(wú)人機、小型智能車(chē)等),給傳統雷達目標識別方法帶來(lái)了巨大挑戰。在使用雷達對此類(lèi)小型目標進(jìn)行探測時(shí)得到的信號回波能量通常較低,導致在復雜環(huán)境噪聲與雜波影響下難以使用傳統恒虛警( Constant False Alarm Rate,CFAR)目標檢測方法對其進(jìn)行識別。針對以上問(wèn)題,結合深度學(xué)習的方法提出一種基于殘差連接長(cháng)短期記憶網(wǎng)絡(luò )(Long Short-Term Memory,LSTM)的多類(lèi)別雷達目標識別模型,以同一距離門(mén)的相鄰時(shí)間點(diǎn)的回波序列數據作為樣本來(lái)設計數據集,使用多層的LSTM網(wǎng)絡(luò )提取雷達回波樣本中的時(shí)序信息,并在網(wǎng)絡(luò )中加入殘差連接以避免網(wǎng)絡(luò )層數增多出現網(wǎng)絡(luò )退化問(wèn)題,同時(shí)將用于多類(lèi)別分類(lèi)問(wèn)題的CCE(Categorical Cross-Entropy)函數作為網(wǎng)絡(luò )的損失函數來(lái)訓練網(wǎng)絡(luò ),實(shí)現對包括無(wú)人機、智能車(chē)、行人以及噪聲在內的4類(lèi)目標的識別和分類(lèi)。試驗結果表明基于殘差連接LSTM網(wǎng)絡(luò )的多類(lèi)別雷達目標識別模型相比于傳統恒虛警檢測方法具有更高的識別準確率和F1值。

    Abstract:

    In recent years, the emergence of a variety of small smart detection devices(such as UAV, small smart car, etc.)has brought great challenges to traditional radar target recognition methods. The signal echo energy obtained when using radar to detect such small targets is usually low,which makes it difficult to identify them by using the traditional constant false alarm rate (CFAR) target detection method under the influence of complex environmental noise and clutter. In response to the above problems,this paper combines the deep learning method to propose a multi-class radar target recognition model based on residual connected Long Short-Term Memory (LSTM),which takes the echo sequence data at adjacent time points at the same distance gate as the sample to design the data set,the multi-layer LSTM network is used to extract the timing information in the radar echo samples,and the residual connection is added to the network to avoid the problem of network degradation due to the increase of network layers. At the same time,the CCE (categorical cross entropy) function used for the multi-class classification problem is used as the loss function of the network to train the network and realize the recognition and classification of four types of targets, including UAV,smart car,pedestrian and noise. The experimental results show that the multi class radar target recognition model based on residual connected LSTM network has higher recognition accuracy and F1 value than the traditional CFAR detection method.

    參考文獻
    相似文獻
    引證文獻
引用本文

袁浩,張軍良.基于殘差連接LSTM的雷達目標分類(lèi)識別方法計算機測量與控制[J].,2022,30(4):182-189.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-02-17
  • 最后修改日期:2022-03-11
  • 錄用日期:2022-03-14
  • 在線(xiàn)發(fā)布日期: 2022-04-21
  • 出版日期:
文章二維碼
凤庆县| 偏关县| 千阳县| 关岭| 牟定县| 塔河县| 莎车县| 曲阜市| 富裕县| 汝阳县| 金昌市| 郴州市| 藁城市| 灵石县| 荔波县| 咸宁市| 巨鹿县| 凤庆县| 黎城县| 衢州市| 龙岩市| 五大连池市| 辽阳市| 高雄县| 河津市| 聂荣县| 喀喇沁旗| 察雅县| 陆河县| 富顺县| 资阳市| 邮箱| 高阳县| 随州市| 聂拉木县| 浮山县| 高安市| 巴彦县| 甘德县| 新兴县| 临清市|