国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

融合多維注意力機制CNN皮膚腫瘤圖像分割提取
DOI:
CSTR:
作者:
作者單位:

1.甘肅省人民醫院整形美容外科;2.蘭州資源環(huán)境職業(yè)技術(shù)大學(xué)水利與電力工程學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家自然科學(xué)基金(61862039,61462059),甘肅省人民醫院院內科研基金重點(diǎn)學(xué)科項目(20GSSY1-3)


Combined Multidimensional Attention Mechanism Convolutional Neural Network in Skin Tumor Image Segmentation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對卷積神經(jīng)網(wǎng)絡(luò )(CNN)在醫學(xué)圖像分割時(shí),受皮膚病損圖像多樣性、分割目標位置、形狀及尺度變化等因素影響,提出了一種基于傳統卷積神經(jīng)網(wǎng)絡(luò )綜合注意力模塊圖像分割算法。首先利用U-Net主干網(wǎng)絡(luò )的優(yōu)勢,其目的讓圖像特征提取更完善;其次,由空間、通道、尺度構成的綜合注意力機制對目標病灶區域進(jìn)行檢測識別,利用通道級聯(lián)把來(lái)自編碼器中低級圖像特征和解碼器中高級圖像特征注意力結合起來(lái)進(jìn)行權值自適應融合,提升了網(wǎng)絡(luò )對樣本病灶區的關(guān)注度和辨識力,突出強調最相關(guān)的特征通道和多尺度間最顯著(zhù)的特征圖。通過(guò)對ISIC2018數據集及醫院整形外科提供患者不同類(lèi)型的皮膚腫瘤圖像進(jìn)行分割測試,并將注意力模塊隨機組合形成的不同算法進(jìn)行指標評價(jià)比對,所提出算法的平均分割精度可達92.89%。實(shí)驗結果表明,所提出算法是有效可行的,在多維度下分割處理帶復雜背景的皮膚病灶圖像時(shí)有更高的魯棒性。

    Abstract:

    In medical image segmentation, convolutional neural network (CNN) is affected by the diversity of skin lesions images, the location, shape and scale changes of segmentation targets, and other factors. A multi-dimensional attention module based on space, channel and scale is proposed to optimize the convolutional neural network image segmentation algorithm. Firstly, using the advantage of U-NET backbone network, its purpose is to make image feature extraction more perfect. Second, composed of multidimensional space, channels, scale attention mechanism identification of target lesion area detection, using the lower-level channel cascade from the encoder image features and the decoder senior image adaptive weighting fusion of attention unifies, enhance the awareness of the network on the sample lesions and discrimination, and highlight the most relevant characteristics of the channel, Emphasize the most salient feature maps between multiple scales. The segmentation test was carried out on ISIC2018 data set and images of different types of skin tumors provided by hospital plastic surgery department, and the index evaluation and comparison of different algorithms formed by random combination of attention modules showed that the average segmentation accuracy of the proposed algorithm could reach 92.89%. Experimental results show that the proposed algorithm is effective and feasible, and has higher robustness in the segmentation of cutaneous lesions under complex background.

    參考文獻
    相似文獻
    引證文獻
引用本文

高正君,張佩炯,司小強.融合多維注意力機制CNN皮膚腫瘤圖像分割提取計算機測量與控制[J].,2022,30(8):161-168.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-02-06
  • 最后修改日期:2022-03-07
  • 錄用日期:2022-03-08
  • 在線(xiàn)發(fā)布日期: 2022-08-25
  • 出版日期:
文章二維碼
杂多县| 定边县| 太谷县| 万年县| 长海县| 海口市| 三都| 慈溪市| 宿松县| 铜陵市| 新建县| 乌兰浩特市| 汤原县| 双鸭山市| 彭州市| 静安区| 独山县| 大荔县| 房山区| 盖州市| 鹤壁市| 安阳县| 丽江市| 龙川县| 嘉鱼县| 鄂尔多斯市| 石楼县| 三穗县| 资溪县| 炉霍县| 武清区| 图们市| 朝阳区| 商丘市| 江川县| 宾川县| 子长县| 灌阳县| 会泽县| 馆陶县| 潍坊市|