国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于改進(jìn)YOLOv5算法的管道漏磁信號識別方法
DOI:
CSTR:
作者:
作者單位:

沈陽(yáng)工業(yè)大學(xué)

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

遼寧省自然科學(xué)基金面上項目(2019-MS-243);國家自然科學(xué)基金項目(62101356);遼寧省教育廳高等學(xué)校基本科研項目(LJKZ0134);大連理工大學(xué)工業(yè)裝備智能控制與優(yōu)化教育部重點(diǎn)實(shí)驗室開(kāi)放課題基金資助項目(LICO2021TB02)


Pipeline Magnetic Flux Leakage Signal Recognition Method Based on Improved YOLOv5 Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    長(cháng)輸油氣管道作為能源運輸的主要方式,安全問(wèn)題至關(guān)重要。管道漏磁內檢測技術(shù)作為管道缺陷檢測的重要方法之一,在管道安全保障中發(fā)揮著(zhù)重要作用。人工智能技術(shù)可實(shí)現管道內檢測數據的自動(dòng)識別,對于減少人力工作量,減少人為誤差,提升數據判讀準確性具有重要意義。通過(guò)引入損失函數Distance-IoU對目標檢測算法YOLOv5進(jìn)行改進(jìn),利用改進(jìn)YOLOv5算法對管道漏磁數據進(jìn)行訓練,使之具有對漏磁缺陷信號自動(dòng)識別的能力。通過(guò)實(shí)驗,對實(shí)際漏磁內檢測數據進(jìn)行識別。結果表明,改進(jìn)的YOLOv5算法實(shí)現了管道缺陷漏磁信號的自動(dòng)檢測識別。并且在相同的訓練條件下,改進(jìn)的YOLOv5算法相較于原始算法準確率有明顯的提升,在識別缺陷數量上其精度達到92.8%,比原算法提升了3.22%,改進(jìn)后的模型損失函數平均損失率為3.6%,比原始YOLOv5模型降低了2.2%,表明該方法在管道缺陷漏磁數據自動(dòng)識別檢測方面具有較好的可行性。

    Abstract:

    As the main way of energy transportation, long-distance oil and gas pipeline safety is very important. As one of the important methods of pipeline defect detection, pipeline magnetic flux leakage internal detection technology plays an important role in pipeline safety. Artificial intelligence technology can realize the automatic identification of pipeline inspection data, which is of great significance to reduce human workload, reduce human error and improve the accuracy of data interpretation. The distance IOU loss function is introduced to improve the yolov5 algorithm, and the improved yolov5 algorithm is used to train the pipeline magnetic flux leakage data, so that it can automatically identify the magnetic flux leakage signal. Through experiments, the actual MFL internal detection data are identified. The results show that the improved yolov5 algorithm can realize the automatic identification and detection of pipeline defects. Under the same training conditions, the accuracy of the improved model is significantly higher than that of the original model. The accuracy of defect identification is 92.8%, which is 3.22% higher than that of the original model. The average loss rate of the improved model is 3.6%, which is 2.2% lower than that of the original model, The results show that the method is feasible in automatic identification and detection of pipeline defect magnetic flux leakage data.

    參考文獻
    相似文獻
    引證文獻
引用本文

王國慶,李璇,楊理踐,高松巍,耿浩.基于改進(jìn)YOLOv5算法的管道漏磁信號識別方法計算機測量與控制[J].,2022,30(8):147-154.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-01-21
  • 最后修改日期:2022-03-14
  • 錄用日期:2022-03-14
  • 在線(xiàn)發(fā)布日期: 2022-08-25
  • 出版日期:
文章二維碼
永顺县| 宜城市| 扎鲁特旗| 延川县| 锦屏县| 文登市| 新昌县| 贡山| 内乡县| 永胜县| 新干县| 抚州市| 阳原县| 瑞安市| 望江县| 碌曲县| 哈密市| 锦屏县| 黔西| 昭平县| 泰宁县| 大埔县| 穆棱市| 迭部县| 延安市| 白河县| 巍山| 樟树市| 舒兰市| 平顶山市| 甘洛县| 富源县| 伊川县| 南汇区| 仁怀市| 筠连县| 农安县| 五台县| 葫芦岛市| 汽车| 中山市|