国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

一種面向缺陷檢測過(guò)程的警報自動(dòng)確認方法
DOI:
CSTR:
作者:
作者單位:

北京郵電大學(xué)

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家自然科學(xué)基金項目(面上項目,重點(diǎn)項目,重大項目)


An Automatic Alarm Identification Method Oriented to Defect Detection Process
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    靜態(tài)分析工具能夠一定程度上幫助開(kāi)發(fā)者檢測代碼中的重要錯誤。然而,可擴展性和不可判定性的存在會(huì )影響這些工具的準確率,導致它們無(wú)法被用于更廣泛的實(shí)踐中。最近,研究人員開(kāi)始利用人工智能的技術(shù)來(lái)提高這些工具的可使用性,通過(guò)將正確和錯誤的警報自動(dòng)分類(lèi),以節省在軟件開(kāi)發(fā)過(guò)程中人工確認警報所需要的人力和時(shí)間的花費。傳統的方法主要通過(guò)使用手工提取的特征來(lái)表示有缺陷的代碼片段,難以抓住它們深層次的語(yǔ)義信息。為了克服傳統方法的限制,設計并提出了一種創(chuàng )新的特征提取方法,通過(guò)收集并提取缺陷模式狀態(tài)機實(shí)例狀態(tài)轉換過(guò)程中相關(guān)指令集所包含的細粒度的語(yǔ)法、語(yǔ)義信息,并將有效的深度學(xué)習框架與之相結合,從而實(shí)現跨工程的警報自動(dòng)確認。在五個(gè)開(kāi)源工程的警報數據集上實(shí)驗,分別與基于傳統度量元的自動(dòng)確認方法比較,AUC指標提升幅度在1.83%-31.81%之間,表明該方法能夠有效提升跨工程警報自動(dòng)確認的表現。

    Abstract:

    Static analysis (SA) tools can aid the developers detect the critical errors in software to some degree. However, challenges such as scalability and undecidability are likely to have impact on their precision and performances, preventing these tools from being widely adopted in practice. Recently, researchers have begun to utilize artificial intelligence techniques to improve the usability of these tools by automatically classifying false positive alarms, manual identification of which is laborious and time-consuming in software development processes. Traditional approaches mainly focus on using hand-engineered features to represent the defective code snippets, hard to extract the deep semantic information of reported alarms. To overcome the limitations of traditional approaches, a novel feature extraction approach is designed and proposed. By collecting and capturing the fine-grained semantic and syntactic information included in instructions related to the state-transforming processes of instances of fault pattern state machine, and combining them with an effective deep learning framework, cross-project defect automatic identification can be achieved. The experiment is based on the alarm dataset of five open-source projects. Comparing with the traditional metrics-based method, the indicator AUC is increased by between 1.83%-31.81%. The experimental results show that the proposed method is effective and can yield significant improvement on cross-project defect identification.

    參考文獻
    相似文獻
    引證文獻
引用本文

孔焦龍,金大海,宮云戰.一種面向缺陷檢測過(guò)程的警報自動(dòng)確認方法計算機測量與控制[J].,2022,30(7):26-34.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-01-05
  • 最后修改日期:2022-02-12
  • 錄用日期:2022-02-14
  • 在線(xiàn)發(fā)布日期: 2022-07-19
  • 出版日期:
文章二維碼
札达县| 宜宾县| 温泉县| 富平县| 邵武市| 东乌珠穆沁旗| 连南| 德惠市| 淮滨县| 玉林市| 饶平县| 鄢陵县| 理塘县| 扎鲁特旗| 平湖市| 安达市| SHOW| 芒康县| 潼南县| 舟山市| 石景山区| 商城县| 武隆县| 定日县| 乐至县| 保山市| 会同县| 乌审旗| 神池县| 枣庄市| 九寨沟县| 汤原县| 梁河县| 呼和浩特市| 什邡市| 长寿区| 类乌齐县| 澄城县| 崇文区| 吴川市| 临泽县|