国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于FPGA的深度強化學(xué)習硬件加速技術(shù)研究
DOI:
CSTR:
作者:
作者單位:

哈爾濱工業(yè)大學(xué) 電子與信息工程學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP3

基金項目:


Research on hardware acceleration technology of deep reinforcement learning based on FPGA
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    深度強化學(xué)習(Deep Reinforcement Learning, DRL)是機器學(xué)習領(lǐng)域的一個(gè)重要分支,用于解決各種序貫決策問(wèn)題,在自動(dòng)駕駛、工業(yè)物聯(lián)網(wǎng)等領(lǐng)域具有廣泛的應用前景。由于DRL具備計算密集型的特點(diǎn),導致其難以在計算資源受限且功耗要求苛刻的嵌入式平臺上進(jìn)行部署。針對DRL在嵌入式平臺上部署的局限性,采用軟硬件協(xié)同設計的方法,設計了一種面向DRL的FPGA加速器,提出了一種設計空間探索方法,在ZYNQ7100異構計算平臺上完成了對Cartpole應用的在線(xiàn)決策任務(wù)。實(shí)驗結果表明,研究在進(jìn)行典型DRL算法訓練時(shí)的計算速度和運行功耗相對于CPU和GPU平臺具有明顯的優(yōu)勢,相比于CPU實(shí)現了12.03的加速比,相比于GPU實(shí)現了28.08的加速比,運行功耗僅有7.748W,滿(mǎn)足了深度強化學(xué)習在嵌入式領(lǐng)域的在線(xiàn)決策任務(wù)。

    Abstract:

    Deep reinforcement learning (DRL) is an important branch in the field of machine learning. It is used to solve various sequential decision-making problems. It has a wide application prospect in the fields of automatic driving, industrial Internet of things and so on. Because DRL is computationally intensive, it is difficult to deploy on embedded platforms with limited computing resources and demanding power consumption. In view of the limitations of DRL deployment on embedded platform, a DRL oriented FPGA accelerator is designed by using the method of software and hardware collaborative design, and a design space exploration method is proposed. The online decision-making task of cartpole application is completed on the zynq7100 heterogeneous computing platform. The experimental results show that the computing speed and running power consumption of the research in the training of typical DRL algorithm have obvious advantages over the CPU and GPU platform. Compared with the CPU, the CPU achieves an acceleration ratio of 12.03 and the GPU achieves an acceleration ratio of 28.08, and the running power consumption is only 7.748w, which meets the online decision-making task of deep reinforcement learning in the embedded field.

    參考文獻
    相似文獻
    引證文獻
引用本文

鳳雷,王賓濤,劉冰,李喜鵬.基于FPGA的深度強化學(xué)習硬件加速技術(shù)研究計算機測量與控制[J].,2022,30(6):242-247.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2021-12-20
  • 最后修改日期:2022-01-04
  • 錄用日期:2022-01-05
  • 在線(xiàn)發(fā)布日期: 2022-06-21
  • 出版日期:
文章二維碼
闵行区| 仁布县| 泌阳县| 伊通| 普安县| 建宁县| 黄冈市| 玛曲县| 扎赉特旗| 祁连县| 新竹县| 沧州市| 富锦市| 晋州市| 仁布县| 阿拉善右旗| 光泽县| 拉孜县| 东乌珠穆沁旗| 运城市| 郯城县| 卢湾区| 和平县| 荆州市| 竹山县| 锡林浩特市| 绵阳市| 安徽省| 原平市| 衡东县| 屯门区| 杂多县| 汶上县| 新龙县| 新邵县| 长寿区| 丘北县| 竹山县| 广丰县| 吴川市| 宁南县|