国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于DDPG深度強化學(xué)習的電站脫硝過(guò)程優(yōu)化控制
DOI:
CSTR:
作者:
作者單位:

廣東工業(yè)大學(xué)計算機學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家自然科學(xué)基金--廣東省聯(lián)合基金項目(U2001201);廣東省基礎與應用基礎研究基金項目(2020B1515120010)。


Optimal control of denitrification processes in coal-fired power plants based on deterministic policy gradients with deep reinforcement learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對選擇性催化還原(selective catalytic reduction,SCR)脫硝系統脫硝過(guò)程存在非線(xiàn)性、多工況等復雜特點(diǎn),提出一種基于MiniBatchKMeans聚類(lèi)與Stacking模型融合的SCR脫硝過(guò)程NOx預測方法。該方法通過(guò)應用MiniBatchKMeans聚類(lèi)算法對訓練集進(jìn)行工況聚類(lèi)與劃分優(yōu)化,建立基于XGBoost、隨機森林、LightGBM以及線(xiàn)性回歸的Stacking融合框架預測模型(Stacking-XRLL),實(shí)現電站SCR系統多變工況下NOx排放的精準預測。以廣東某電站SCR系統脫硝過(guò)程中NOx排放數據為例進(jìn)行建模仿真與實(shí)驗,結果表明與單一建模方法多層前饋神經(jīng)網(wǎng)絡(luò )(BP)、長(cháng)短期記憶神經(jīng)網(wǎng)絡(luò )(LSTM)以及門(mén)控循環(huán)單元神經(jīng)網(wǎng)絡(luò )(GRU)相比,Stacking-XRLL建模方法的平均預測精確度達到了99%,并最終結合建立好的深度確定性策略梯度(DDPG)強化學(xué)習模型,實(shí)現電站SCR脫硝過(guò)程的參數優(yōu)化控制。

    Abstract:

    A method for NOx prediction in SCR denitration based on the fusion of MiniBatchKMeans clustering and stacking model is proposed to address the complex characteristics of the denitration process of selective catalytic reduction (SCR) denitration system, such as non-linearity and multiple working conditions.. The method applies the MiniBatchKMeans clustering algorithm to the training set for work condition clustering and partitioning optimization, and establishes the stacking fusion framework prediction model (Stacking-XRLL) based on XGBoost, Random Forest, LightGBM and linear regression to achieve accurate NOx emission prediction under multi-variable work conditions in power station SCR systems. The modeling simulations and experiments were carried out with NOx emission data from the denitrification process of a power station SCR system in China. The results show that the Stacking-XRLL modeling method achieves an average prediction accuracy of 99% compared to the single modeling methods of the multilayer back propagation neural network(BP), long-short term memory neural network(LSTM) and gate recurrent unit neural network(GRU). The final combination of the established deep deterministic policy gradient (DDPG) reinforcement learning model enables the optimal control of the SCR denitrification process in a power station.

    參考文獻
    相似文獻
    引證文獻
引用本文

林康威,肖紅,姜文超,楊建仁,熊廣思,黃冠儒.基于DDPG深度強化學(xué)習的電站脫硝過(guò)程優(yōu)化控制計算機測量與控制[J].,2022,30(10):132-139.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2021-12-07
  • 最后修改日期:2022-01-02
  • 錄用日期:2022-01-04
  • 在線(xiàn)發(fā)布日期: 2022-11-01
  • 出版日期:
文章二維碼
安平县| 化隆| 太原市| 秦皇岛市| 广宁县| 哈尔滨市| 竹山县| 新乐市| 洪江市| 徐汇区| 威宁| 始兴县| 内丘县| 岑巩县| 军事| 广东省| 城步| 潢川县| 朔州市| 无棣县| 额敏县| 绥滨县| 寻甸| 通山县| 当涂县| 武夷山市| 阳城县| 奉化市| 凭祥市| 乐平市| 龙里县| 略阳县| 凤山市| 沈阳市| 岢岚县| 宣城市| 廊坊市| 佛学| 五河县| 鄄城县| 平远县|