国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于互相關(guān)能比熵和BiGRU-GRU的軋機關(guān)鍵零部件早期故障診斷
DOI:
CSTR:
作者:
作者單位:

重慶交通大學(xué)

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:


Early fault diagnosis of key parts of rolling mill based on cross-correlation energy ratio entropy and BIGRU-GRU
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    摘要:軋機作為機械制造行業(yè)的重要設備,工況環(huán)境復雜,其關(guān)鍵零部件極易發(fā)生故障,對其進(jìn)行早期故障診斷,趨勢預測存在困難。對此本文以軸承為例,提出了一種新型性能退化指標用于檢測出現早期故障的時(shí)刻。對于防止軋機工作環(huán)境復雜的問(wèn)題,首先要對采集到的樣本信號進(jìn)行降噪,實(shí)現對噪聲信號的去除,之后利用互相關(guān)函數對樣本前后數據進(jìn)行互相關(guān)分析,然后求分析所得數據的所有極值點(diǎn)能量與總能量得比值,最后將做的比值帶入信息熵公式,即為最終得性能退化指標,即互相關(guān)能比熵,并通過(guò)包絡(luò )譜分析驗證指標的有效性。針對軸承性能退化趨勢預測的問(wèn)題,利用門(mén)控循環(huán)單元網(wǎng)絡(luò )(Gate Recurrent Unit, GRU)和雙向門(mén)控循環(huán)單元網(wǎng)絡(luò )(Bidirectional Gate Recurrent Unit, GRU)各自的優(yōu)點(diǎn)建立了BiGRU-GRU網(wǎng)絡(luò )。將采集到的數據分為訓練數據和測試數據,在訓練數據中訓練之后,對測試數據進(jìn)行預測,實(shí)現了對軸承性能退化趨勢的預測。并通過(guò)對比實(shí)驗證明了所提性能評估指標和網(wǎng)絡(luò )比一般指標和網(wǎng)絡(luò )具有更好的效果。

    Abstract:

    Abostr: As an important equipment for metallurgy, the rolling mill has complex working conditions, and its key parts are prone to failure, so it is difficult to make early fault diagnosis and trend prediction. Taking bearing as an example, a new performance degradation index is proposed to detect the moment of early failure. To prevent mill work environment complex problems, first of all samples were collected for signal de-noising, implementation, to eliminate the noise signal after the cross-correlation function is used to analyse the data before and after the sample cross-correlation analysis, then analyze the data from all of the extreme value point energy and total energy ratio, ratio into the information entropy formula, finally will do for ultimate performance degradation index, namely It is the cross correlation energy ratio entropy, and the validity of the index is verified by envelope spectrum analysis. Aiming at the problem of bearing performance degradation trend prediction, BiGRU-GRU network is established based on the respective advantages of Gate Recurrent Unit (GRU) and Bidirectional Gate Recurrent Unit (BiGRU). The collected data are divided into training data and test data. After training in the training data, the test data are predicted to realize the prediction of bearing performance degradation trend. Comparative experiments show that the proposed performance evaluation index and network have better effects than the general index and network.

    參考文獻
    相似文獻
    引證文獻
引用本文

胡睿.基于互相關(guān)能比熵和BiGRU-GRU的軋機關(guān)鍵零部件早期故障診斷計算機測量與控制[J].,2022,30(2):95-102.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2021-11-15
  • 最后修改日期:2021-12-21
  • 錄用日期:2021-12-31
  • 在線(xiàn)發(fā)布日期: 2022-02-22
  • 出版日期:
文章二維碼
武宁县| 班玛县| 邢台市| 上高县| 台东市| 沈丘县| 金湖县| 普兰县| 杭锦旗| 五莲县| 阳泉市| 天长市| 昌宁县| 黄冈市| 高雄市| 鲁甸县| 高淳县| 安龙县| 宜兰县| 高平市| 台前县| 什邡市| 蓝山县| 安西县| 海晏县| 那坡县| 兴和县| 沅江市| 麻江县| 黄浦区| 合江县| 宣汉县| 天镇县| 宝清县| 古交市| 江都市| 张家口市| 陆良县| 高邑县| 双辽市| 比如县|