国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于改進(jìn)Bi-RRT的移動(dòng)機器人路徑規劃算法
DOI:
CSTR:
作者:
作者單位:

廣東交通職業(yè)技術(shù)學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

2020年廣東省科技創(chuàng )新戰略專(zhuān)項資金(“攀登計劃”專(zhuān)項資金)基于激光雷達SLAM全自動(dòng)裝卸載機器人(pdjh2020b0978);廣東交通職業(yè)技術(shù)學(xué)院大學(xué)生科技創(chuàng )新項目(QKYB0716119);教育部職業(yè)院校信息化教學(xué)研究課題(2018LXA0006)


Path Planning of Mobile Robots Based on Improved Bi-RRT Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    雙向快速擴展隨機樹(shù)(Bi-RRT)算法因采樣點(diǎn)的隨機性導致在復雜環(huán)境中的路徑規劃存在搜索時(shí)間長(cháng)、采樣效率低等問(wèn)題,為此提出了一種改進(jìn)Bi-RRT的移動(dòng)機器人路徑規劃算法。算法引入啟發(fā)式搜索策略,分別以機器人的起點(diǎn)和終點(diǎn)為中心,構造了二維高斯分布函數,并用該概率密度函數約束采樣點(diǎn)的生成,使得越接近目標點(diǎn)的空間采樣點(diǎn)出現概率越大,同時(shí)保留部分均勻分布的采樣點(diǎn),這樣采樣過(guò)程既可以利用目標點(diǎn)的位置信息又保證了算法的概率完備性。通過(guò)算法設計的啟發(fā)式采樣點(diǎn)的引導,兩棵隨機樹(shù)可以快速向著(zhù)目標區域生長(cháng),降低了搜索的盲目性,提高了搜索的效率。仿真結果:相比于基本Bi-RRT算法,改進(jìn)算法在復雜環(huán)境下規劃時(shí)間縮短了43.9%,擴展節點(diǎn)數目減少了41.4%,路徑長(cháng)度優(yōu)化了8.1%,并分析了高斯分布采樣點(diǎn)占采樣點(diǎn)總數的比值對算法性能的影響。

    Abstract:

    Because of the randomness of the sampling points, the bidirectional rapidly-exploring random tree algorithm (Bi-RRT) has long search time and low sampling efficiency in path planning in complex environments. For this reason, an improved Bi-RRT Path planning algorithm is proposed. The algorithm introduces a heuristic search strategy to construct a two-dimensional Gaussian distribution density function with the start and end points of the robot as the center, and use this function to constrain the generation of sampling points, so that the closer the target point is, the greater the probability of occurrence of the spatial sampling point. At the same time, some uniformly distributed sampling points are retained, so that the sampling process can not only use the location information of the target point, but also ensure the completeness of the probability. Guided by the heuristic sampling points designed by the algorithm, two random trees can quickly grow toward the target area, thereby reducing the blindness of the search and improving the efficiency of the search. The simulation results : compared with the basic Bi-RRT algorithm, the planning time of the improved algorithm in complex environments is shortened by 43.9%, the number of extended nodes is reduced by 41.4%, and the path length is optimized by 8.1%. Finally, the influence of the ratio of Gaussian distribution sampling points to the total number of sampling points on the performance of the algorithm is analyzed.

    參考文獻
    相似文獻
    引證文獻
引用本文

崔春雷,陳詩(shī)豪,沈超航,李鋒.基于改進(jìn)Bi-RRT的移動(dòng)機器人路徑規劃算法計算機測量與控制[J].,2022,30(5):181-185.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2021-11-05
  • 最后修改日期:2022-03-09
  • 錄用日期:2021-12-01
  • 在線(xiàn)發(fā)布日期: 2022-05-25
  • 出版日期:
文章二維碼
丹东市| 兰溪市| 绥中县| 渭南市| 塔城市| 宝坻区| 祁阳县| 汝阳县| 六安市| 汶上县| 清远市| 白朗县| 河南省| 揭阳市| 天台县| 凤庆县| 汤阴县| 武宣县| 哈密市| 罗源县| 英山县| 蒲城县| 宁海县| 丹阳市| 宁河县| 宜宾市| 揭东县| 宁阳县| 库尔勒市| 西安市| 教育| 临安市| 蒙城县| 信阳市| 威海市| 庐江县| 陕西省| 常山县| 修文县| 邢台市| 如皋市|