国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于K-means和改進(jìn)KNN算法的風(fēng)電功率短期預測系統
DOI:
CSTR:
作者:
作者單位:

商洛學(xué)院 商洛

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP183;TM614

基金項目:

:國家自然科學(xué)(No.61501107);陜西省教育廳2019年度專(zhuān)項科學(xué)研究計劃項目(No.19JK0261);商洛學(xué)院服務(wù)地方科研專(zhuān)項項目(No.19FK002)。


Wind Power Short-term Forecasting System Based on K-means and Improved KNN Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為提高風(fēng)電功率短期預測的準確性,針對KNN(K-Nearest Neighbor algorithm)算法在風(fēng)電功率預測中的不足,提出了基于K-means和改進(jìn)KNN算法的風(fēng)電功率短期預測方法。利用K-means聚類(lèi)方法確定風(fēng)電歷史樣本的類(lèi)別,對KNN算法中搜索相似歷史樣本集的方式進(jìn)行了改進(jìn)和優(yōu)化,構建了預測模型,并采用C/S架構實(shí)現了預測系統的設計。該系統具有自修正功能,能夠隨著(zhù)預測次數的增加,不斷修正預測模型,逐漸降低預測的誤差率。以吉林省某風(fēng)電場(chǎng)歷史數據為樣本進(jìn)行了仿真分析,結果顯示該算法與其它算法相比平均絕對誤差和均方根誤差最大下降1.08%和0.48%,運算時(shí)間提升了5.45%,在風(fēng)電功率超短期多步預測中具有推廣應用價(jià)值。

    Abstract:

    In order to improve the accuracy of short-term prediction of wind power, in view of the shortcomings of KNN (K-Nearest Neighbor algorithm) algorithm in wind power prediction, a short-term wind power forecasting method based on K-means and an improved KNN algorithm is proposed . The K-means clustering method is used to determine the types of historical wind power samples, the method of searching for similar historical sample sets in the KNN algorithm is improved and optimized, a prediction model is constructed, and the C/S architecture is used to realize the design of the prediction system. The system has a self-correction function, which can continuously correct the forecast model as the number of forecasts increases, and gradually reduce the error rate of the forecast. A simulation analysis with historical data of a wind farm in Jilin Province is carried out. The results show that compared with other algorithms, the algorithm has the largest decrease in average absolute error and root mean square error by 1.08% and 0.48%, and the calculation time has increased by 5.45%,ultra-short-term multi-step forecasting has the value of promotion and application.

    參考文獻
    相似文獻
    引證文獻
引用本文

何建強,張玉萍,滕志軍.基于K-means和改進(jìn)KNN算法的風(fēng)電功率短期預測系統計算機測量與控制[J].,2022,30(5):156-162.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2021-11-03
  • 最后修改日期:2021-12-03
  • 錄用日期:2021-12-03
  • 在線(xiàn)發(fā)布日期: 2022-05-25
  • 出版日期:
文章二維碼
正安县| 田林县| 阿拉善盟| 邓州市| 安龙县| 耒阳市| 收藏| 福鼎市| 罗江县| 综艺| 如皋市| 光泽县| 牡丹江市| 宁化县| 安远县| 密云县| 托克逊县| 荆州市| 屏东市| 辉县市| 道孚县| 万全县| 百色市| 托克逊县| 禄劝| 东莞市| 固原市| 连南| 加查县| 长沙县| 都昌县| 屏东市| 新泰市| 高平市| 思茅市| 青阳县| 察雅县| 广河县| 宁强县| 黑山县| 墨玉县|