国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于深度學(xué)習的隧道病害圖像檢測
DOI:
CSTR:
作者:
作者單位:

上海大學(xué) 機電工程與自動(dòng)化學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:


Image detection of disease in cross-river tunnel based on deep learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    隨著(zhù)我國城市地鐵的快速發(fā)展,隧道的養護變得越來(lái)越重要,傳統的人工檢測方法不僅效率低、成本高,而且耗時(shí),已經(jīng)不能滿(mǎn)足當今的需求。通過(guò)對越江隧道中的電纜通道的病害特征進(jìn)行研究,提出一種基于深度學(xué)習的隧道多病害檢測的方法,并提出了一種針對隧道病害檢測的殘差融合模塊網(wǎng)絡(luò )(Resfmnet),利用深度學(xué)習網(wǎng)絡(luò )提取圖像病害特征并進(jìn)行病害分類(lèi),提高了病害的檢測能力,所使用的數據集是通過(guò)特種機器人在越江隧道中的電纜通道拍攝的視頻獲得;實(shí)驗結果表明所提出的網(wǎng)絡(luò )顯示出更高的準確性和泛化性,對多病害的檢測的精度mAP達到0.8914,使得越江隧道檢查和監控變得高效、低成本,并最終實(shí)現自動(dòng)化。

    Abstract:

    With the rapid development of urban subways in our country, the maintenance of tunnels has become more and more important. The traditional manual inspection methods are not only low in efficiency, high in cost, but also time-consuming, which can no longer meet today's needs. By studying the disease characteristics of the cable channel in the cross-river tunnel, a method for detecting multiple diseases in the tunnel based on deep learning is proposed, and a residual fusion module network (Resfmnet) for the detection of tunnel diseases is proposed, using deep learning The network extracts image disease features and performs disease classification, which improves the detection ability of diseases. The data set used is obtained from the video taken by special robots in the cable channel of the cross-river tunnel; The experimental results show that the proposed network shows higher accuracy and generalization, and the accuracy mAP of multi-disease detection reaches 0.8914, which makes the inspection and monitoring of the cross-river tunnel more efficient and low-cost, and finally realizes automation.

    參考文獻
    相似文獻
    引證文獻
引用本文

高新聞,王龍坤.基于深度學(xué)習的隧道病害圖像檢測計算機測量與控制[J].,2022,30(2):58-64.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2021-08-10
  • 最后修改日期:2021-09-08
  • 錄用日期:2021-09-09
  • 在線(xiàn)發(fā)布日期: 2022-02-22
  • 出版日期:
文章二維碼
白玉县| 静海县| 德庆县| 绥江县| 宜君县| 巴东县| 武鸣县| 六盘水市| 漳平市| 定日县| 宣化县| 错那县| 株洲县| 梅河口市| 萨嘎县| 庄河市| 丹江口市| 北碚区| 慈溪市| 苍山县| 台安县| 临漳县| 东丰县| 伊金霍洛旗| 昌宁县| 兴山县| 黑龙江省| 工布江达县| 花莲市| 天峨县| 枣强县| 朝阳县| 纳雍县| 屯留县| 随州市| 蒙自县| 夏邑县| 塘沽区| 阆中市| 驻马店市| 新晃|