国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于尺度特征卷積神經(jīng)網(wǎng)絡(luò )的高分對地觀(guān)測系統設計
DOI:
CSTR:
作者:
作者單位:

中國航天系統科學(xué)與工程研究院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:


Design of high-resolution earth observation system based on scale feature convolutional neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對高分對地觀(guān)測系統使用過(guò)程中會(huì )受到不同活動(dòng)項目的約束影響,出現系統成像、回傳及活動(dòng)完成率低的問(wèn)題,導致觀(guān)測效果不佳,為此提出了基于尺度特征卷積神經(jīng)網(wǎng)絡(luò )的高分對地觀(guān)測系統設計。該系統通過(guò)管控中心服務(wù)器推送系統運行狀態(tài)信息,實(shí)現三維顯示任務(wù)的功能。利用 CMOS圖像傳感器實(shí)現成像面對應點(diǎn)的傳送,利用 FPGA控制器控制其數據存儲時(shí)間。采用BCM5464千兆交換機,實(shí)現數據高速傳輸。構建并訓練尺度特征卷積神經(jīng)網(wǎng)絡(luò ),利用RPN網(wǎng)絡(luò )識別目標區域特征,通過(guò)劃分目標的前景和背景確定了該區域內的訓練興趣區域坐標,從而使RPN網(wǎng)絡(luò )權值學(xué)習達到了預期目標,提升了目標檢測識別的準確性,設計對地觀(guān)測信息管理流程,完成系統設計。由實(shí)驗結果可知,該系統最高成像、回傳概率、活動(dòng)完成率分別為83%、99.9%和100%,具有良好觀(guān)測效果。

    Abstract:

    In view of the high-scoring earth observation system being affected by the constraints of different activities during the use process, the system imaging, backhaul and activity completion rate is low, resulting in poor observation results, for this reason, a convolutional neural network based on scale features is proposed. The design of the high-scoring Earth observation system. The system pushes system operating status information through the management and control center server to achieve the function of three-dimensional display tasks. The CMOS image sensor is used to realize the transmission of the corresponding points on the imaging surface, and the FPGA controller is used to control the data storage time. Adopt BCM5464 gigabit switch to realize high-speed data transmission. Construct and train the scale feature convolutional neural network, use the RPN network to identify the characteristics of the target area, and determine the training interest area coordinates in the area by dividing the foreground and background of the target, so that the RPN network weight learning achieves the expected goal and improves The accuracy of target detection and recognition, the design of the Earth observation information management process, and the completion of the system design. It can be seen from the experimental results that the highest imaging, return probability, and activity completion rate of the system are 83%, 99.9%, and 100%, respectively, which has good observation effects.

    參考文獻
    相似文獻
    引證文獻
引用本文

劉笛,何偉,曹秀云.基于尺度特征卷積神經(jīng)網(wǎng)絡(luò )的高分對地觀(guān)測系統設計計算機測量與控制[J].,2021,29(12):215-219.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2021-08-04
  • 最后修改日期:2021-09-02
  • 錄用日期:2021-09-06
  • 在線(xiàn)發(fā)布日期: 2021-12-24
  • 出版日期:
文章二維碼
桐城市| 鄄城县| 栖霞市| 鄂伦春自治旗| 新巴尔虎左旗| 松潘县| 潮州市| 蒲城县| 东港市| 怀化市| 军事| 大余县| 尼勒克县| 龙胜| 股票| 沙坪坝区| 高碑店市| 苗栗县| 庆云县| 河北区| 寿宁县| 永清县| 开原市| 肥乡县| 原平市| 福泉市| 大冶市| 田阳县| 广昌县| 龙江县| 通化县| 江达县| 宁津县| 临汾市| 从化市| 甘孜县| 云龙县| 同仁县| 盐津县| 潼关县| 通许县|