国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于深度學(xué)習的遙感影像目標檢測系統設計
DOI:
CSTR:
作者:
作者單位:

河海大學(xué)計算機與信息學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:


Design of Remote Sensing Image Target Detection System Based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    遙感影像目標檢測雖然是一種極為有效的地表變化監測手段,但極易受到自然環(huán)境復雜性的影響,從而造成遙感影像中存在混合的雜質(zhì)像素,導致目標檢測準確性較差。為解決此問(wèn)題,設計基于深度學(xué)習的遙感影像目標檢測系統。建立深度學(xué)習框架,分層次連接遙感影像輸入模塊、圖像幀預處理模塊與目標檢測算法模塊,再借助影像目標輸出結構單元,對已獲得的遙感影像像素數據進(jìn)行整合,實(shí)現系統硬件設計。在此基礎上,提取遙感影像的多特征條件,完善現有的目標檢測系統設計方案。通過(guò)分割多級目標節點(diǎn)的方式,得到遙感影像特征的小波分解結果,利用計算求得的邊緣紋理系數,實(shí)現融合深度學(xué)習理論的遙感影像目標變化能力檢測。實(shí)驗結果表明,所設計遙感影像目標檢測系統能夠有效剔除雜質(zhì)像素量,更能適應復雜多變的自然環(huán)境,獲得更為準確的地表變化監測結果。

    Abstract:

    Although remote sensing image target detection is an extremely effective means of monitoring land surface changes, it is extremely susceptible to the complexity of the natural environment, resulting in mixed impurity pixels in remote sensing images, resulting in poor target detection accuracy. To solve this problem, a remote sensing image target detection system based on deep learning is designed. Establish a deep learning framework, connect the remote sensing image input module, image frame preprocessing module and target detection algorithm module at different levels, and then integrate the obtained remote sensing image pixel data with the help of the image target output structure unit to realize the system hardware design. On this basis, the multi-feature conditions of remote sensing images are extracted, and the existing target detection system design scheme is improved. By dividing multi-level target nodes, the wavelet decomposition results of remote sensing image characteristics are obtained, and the edge texture coefficients obtained by calculation are used to realize the detection of remote sensing image target change ability fused with deep learning theory. The experimental results show that the designed remote sensing image target detection system can effectively eliminate the amount of impurity pixels, can adapt to the complex and changeable natural environment, and obtain more accurate surface change monitoring results.

    參考文獻
    相似文獻
    引證文獻
引用本文

張云飛.基于深度學(xué)習的遙感影像目標檢測系統設計計算機測量與控制[J].,2021,29(10):77-82.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2021-07-09
  • 最后修改日期:2021-08-11
  • 錄用日期:2021-08-13
  • 在線(xiàn)發(fā)布日期: 2021-11-11
  • 出版日期:
文章二維碼
天等县| 屯留县| 格尔木市| 桃源县| 崇明县| 平武县| 观塘区| 杭锦旗| 平谷区| 吉安市| 会泽县| 拜城县| 土默特左旗| 集贤县| 河北省| 乃东县| 盘锦市| 乐都县| 嘉定区| 英德市| 米脂县| 阿瓦提县| 长治县| 湖口县| 察隅县| 清新县| 怀宁县| 措勤县| 封开县| 南丹县| 临猗县| 汝阳县| 上思县| 堆龙德庆县| 碌曲县| 无锡市| 哈巴河县| 海晏县| 怀远县| 鹤峰县| 尚志市|