国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于深度遷移自編碼器的變工況下滾動(dòng)軸承故障診斷方法
DOI:
CSTR:
作者:
作者單位:

南開(kāi)大學(xué)電子信息與光學(xué)工程學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家重點(diǎn)研發(fā)計劃項目(項目編號:2020YFB1711500)


Bearings Fault Diagnosis Method Based on Deep Transfer Auto-encoder under Variable Working Conditions
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    在實(shí)際工業(yè)場(chǎng)景下的軸承故障診斷,存在軸承故障樣本不足,訓練樣本與實(shí)際信號樣本存在分布差異的問(wèn)題。本文提出一種新的基于深度遷移自編碼器的故障診斷方法FS-DTAE,應用于不同工況下的軸承故障診斷。該方法首先采用小波包變換進(jìn)行信號處理與特征提取;其次,采用提出的基于樸素貝葉斯與域間差異的特征選取(FSBD)方法對統計特征進(jìn)行評估,選取更有利于跨域故障診斷和遷移學(xué)習的特征;然后,利用源域特征數據訓練深度自編碼器,將訓練得到的模型參數遷移至目標域,再利用目標域正常狀態(tài)樣本對深度遷移自編碼器模型進(jìn)行微調,微調后的模型用于目標域無(wú)標簽特征數據的故障分類(lèi)。最后,基于CWRU軸承故障數據開(kāi)展不同工況下故障診斷實(shí)驗,結果表明,所提出的FS-DTAE方法能夠有效提高不同工況下的故障診斷準確率。

    Abstract:

    Bearing fault diagnosis in the actual industrial scene, there are some problems, such as the lack of bearing fault samples, and the distribution difference between the training samples and the actual signal samples. A new fault diagnosis method based on deep transfer auto-encoder is proposed in this paper, which is applied to the fault diagnosis of bearings under different working conditions. Firstly, wavelet packet transform is used for signal processing and feature extraction; Secondly, the proposed feature selection method based on Naive Bayes and difference between domains (FSBD) is used to evaluate the statistical features and select the features that are more conducive to cross-domain fault diagnosis and transfer learning; the source domain feature data is used to train the deep auto-encoder, and parameters of the trained model are migrated to the target domain. Then, the normal state samples of the target domain are used to fine-tune the deep transfer auto-encoder model, and the fine-tuned model is used for fault classification of the target domain unlabeled feature data. Finally, based on the CWRU bearing fault data, fault diagnosis experiments under different working conditions are performed. The results show that the proposed FS-DTAE method can effectively improve the fault diagnosis accuracy under different working conditions.

    參考文獻
    相似文獻
    引證文獻
引用本文

蘇靖涵,張瀟.基于深度遷移自編碼器的變工況下滾動(dòng)軸承故障診斷方法計算機測量與控制[J].,2021,29(7):85-90.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2021-06-16
  • 最后修改日期:2021-06-18
  • 錄用日期:2021-06-18
  • 在線(xiàn)發(fā)布日期: 2021-07-23
  • 出版日期:
文章二維碼
广平县| 南平市| 尉氏县| 庆安县| 兴业县| 唐山市| 紫云| 萨迦县| 大新县| 赫章县| 延长县| 临清市| 无极县| 靖安县| 汕尾市| 昌黎县| 朝阳市| 凌云县| 剑川县| 大竹县| 景泰县| 枣阳市| 额敏县| 五指山市| 浦江县| 花莲市| 儋州市| 任丘市| 绍兴市| 沾化县| 永定县| 江华| 澎湖县| 武山县| 拉孜县| 安康市| 安宁市| 中牟县| 岳普湖县| 会昌县| 全椒县|