国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于LSTM-LightGBM模型的車(chē)站環(huán)境溫度預測
DOI:
CSTR:
作者:
作者單位:

中國鐵道科學(xué)研究院集團有限公司電子計算技術(shù)研究所

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家自然科學(xué)基金項目(面上項目,重點(diǎn)項目,重大項目),國家重點(diǎn)基礎研究發(fā)展計劃(973計劃)


The Station Environment Temperature Prediction Based On LSTM-LightGBM Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    客運火車(chē)站環(huán)境溫度易受其他環(huán)境特征變量如濕度、PM2.5、二氧化碳等影響,傳統的單變量預測算法并未考慮其他環(huán)境特征變量的影響因素。為進(jìn)一步準確預測車(chē)站環(huán)境溫度值,提出了結合長(cháng)短期記憶神經(jīng)網(wǎng)絡(luò )LSTM與梯度提升算法LightGBM的組合模型,對客運站環(huán)境溫度值進(jìn)行預測。首先將預處理數據輸入LSTM模型,對環(huán)境特征變量濕度、二氧化碳、PM2.5、PM10進(jìn)行單變量預測。再將環(huán)境特征變量的LSTM輸出預測值輸入LightGBM模型得出環(huán)境溫度預測值。根據波形圖與均方根誤差RMSE對比分析,基于LSTM-LightGBM的組合模型預測方法可以保留LSTM模型對單變量預測的周期性特點(diǎn),且可表現出環(huán)境特征變量輸入LightGBM模型后對溫度預測的非平穩變化。結果表明基于LSTM-LightGBM的組合模型方法比單純使用LSTM方法更接近原始波形,具有更低的RMSE。

    Abstract:

    The environment temperature of passenger railway station is easily affected by other environmental characteristic variables such as humidity, PM2.5, carbon dioxide, etc. The traditional univariate prediction algorithm does not consider the influence factors of other environmental characteristic variables.In order to further accurately predict the environmental temperature of the passenger station, a combined model combining LSTM neural network and LightGBM gradient lifting algorithm is proposed to predict the environmental temperature of the passenger station. Firstly, the pre-processed data were input into the LSTM model, and environmental characteristic variables such as humidity, carbon dioxide, PM2.5 and PM10 were predicted. Then input the predicted value of environmental characteristic variables output by LSTM into LightGBM model to get the predicted value of temperature. According to the comparison and analysis of the waveforms and RMSE, the combined model prediction based on LSTM-LightGBM can retain the periodicity of the univariate prediction used by LSTM model, and can show the non-stationary changes of the temperature prediction after the environmental characteristic variables input into LightGBM model. The results show that the combined model method based on LSTM-LightGBM is closer to the original waveform and has lower RMSE than the method using LSTM alone.

    參考文獻
    相似文獻
    引證文獻
引用本文

張亞偉,陳瑞鳳,徐春婕,楊國元,呂曉軍,方凱.基于LSTM-LightGBM模型的車(chē)站環(huán)境溫度預測計算機測量與控制[J].,2022,30(1):20-25.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2021-05-31
  • 最后修改日期:2021-07-09
  • 錄用日期:2021-07-13
  • 在線(xiàn)發(fā)布日期: 2022-01-24
  • 出版日期:
文章二維碼
河北省| 枣庄市| 宁陵县| 隆子县| 江油市| 桐庐县| 镇原县| 合江县| 固阳县| 六安市| 遵义县| 本溪市| 龙江县| 巩义市| 辽阳县| 恭城| 鹿邑县| 鄂伦春自治旗| 新巴尔虎右旗| 尚义县| 美姑县| 东丰县| 西吉县| 涟水县| 怀化市| 阜南县| 东源县| 西乡县| 澄城县| 邯郸市| 宁明县| 赣榆县| 荥经县| 分宜县| 攀枝花市| 永嘉县| 双鸭山市| 双城市| 贺兰县| 东源县| 肥乡县|