国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于離散教與學(xué)算法的分布式預制流水車(chē)間調度研究
DOI:
CSTR:
作者:
作者單位:

西安建筑科技大學(xué) 信息與控制工程學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP18;TU756

基金項目:

國家自然科學(xué)基金資助項目(61473216),陜西省自然科學(xué)基礎研究計劃資助項目(2020JM-489),陜西省教育廳自然科學(xué)基金資助項目(17JK0459),陜西省重點(diǎn)研發(fā)計劃項目(2021GY-066)。


A Discrete Teaching and Learning Algorithm for Flow Shop Scheduling of Distributed Prefabricated Components
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    分布式工廠(chǎng)生產(chǎn)形式對提高預制構件生產(chǎn)效率、保證訂單按時(shí)交付、降低企業(yè)拖期交貨懲罰費用具有重要的意義。因此針對分布式預制構件流水車(chē)間調度問(wèn)題,以最小化訂單總拖期懲罰為目標建立了數學(xué)優(yōu)化模型,并基于雙層整數編碼方式提出了一種離散教與學(xué)算法(DTLBO)。在算法初始化階段,采用啟發(fā)式規則和隨機生成融合策略改善初始解的質(zhì)量,進(jìn)而增加算法的尋優(yōu)效率;在教學(xué)階段,結合問(wèn)題模型特點(diǎn),設計了頂層替換、底層替換兩種鄰域構造,促進(jìn)教師解對學(xué)生解的引導優(yōu)化;在學(xué)習階段,通過(guò)變異算子和交叉算子讓學(xué)生解之間相互學(xué)習更新,進(jìn)一步提升算法的局部開(kāi)發(fā)和全局探索能力。試驗結果表明,與遺傳算法和變鄰域搜索算法對比,提出的DTLBO算法具有更好的求解性能和魯棒性。最后與實(shí)際生產(chǎn)過(guò)程常用的經(jīng)驗啟發(fā)式調度方法相比,提出算法在目標值上表現出不低于10%的平均改進(jìn)率,有望顯著(zhù)增加預制構件制造企業(yè)凈利潤并提高客戶(hù)滿(mǎn)意度,能夠為企業(yè)管理者提供更佳合理的生產(chǎn)調度方案。

    Abstract:

    Distributed factory production is of great significance to improve the production efficiency of prefabricated components, ensure the on-time delivery of orders, and reduce the penalty cost of delayed delivery. Therefore, in order to minimize the penalty of total order delay, a mathematical optimization model is established for the scheduling problem of distributed prefabricated component flow shop, and a discrete teaching-learning based optimization (DTLBO) is proposed based on double-layer integer coding. In the initial stage of the algorithm, heuristic rules and random generation fusion strategy are used to improve the quality of the initial solution, so as to increase the optimization efficiency of the algorithm; in the teaching stage, combined with the characteristics of the problem model, two kinds of neighborhood structures: top-level replacement and bottom-level replacement, are designed to promote the guidance and optimization of the teacher's solution to the student's solution; in the learning stage, the mutation operator and crossover operator are used to let students learn and update each other, so as to further improve the local development and global exploration ability of the algorithm. Experimental results show that compared with genetic algorithm and variable neighborhood search algorithm, the proposed DTLBO achieves better solution quality and robustness. Finally, compared with the empirical heuristic scheduling method commonly used in the actual production process, the proposed algorithm shows an average improvement rate of no less than 10% on the target value, which is expected to significantly increase the net profit of the prefabricated component manufacturing enterprise and improve customer satisfaction, and can provide a better and reasonable production scheduling scheme for enterprise managers.

    參考文獻
    相似文獻
    引證文獻
引用本文

曹勁松,熊福力.基于離散教與學(xué)算法的分布式預制流水車(chē)間調度研究計算機測量與控制[J].,2021,29(12):166-171.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2021-04-22
  • 最后修改日期:2021-05-25
  • 錄用日期:2021-05-26
  • 在線(xiàn)發(fā)布日期: 2021-12-24
  • 出版日期:
文章二維碼
和平县| 土默特右旗| 乌兰察布市| 瑞金市| 乐平市| 昌平区| 阜城县| 望谟县| 新竹市| 司法| 昭苏县| 孟州市| 拉萨市| 阳城县| 遂溪县| 乌拉特前旗| 阿瓦提县| 井冈山市| 顺昌县| 仙居县| 玛多县| 甘德县| 天门市| 磐安县| 南京市| 灯塔市| 黑河市| 札达县| 嘉峪关市| 云梦县| 灵石县| 万宁市| 高清| 玛纳斯县| 阿克陶县| 宝清县| 邹城市| 平塘县| 怀仁县| 武城县| 普安县|