国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

微銑削刀具磨損狀態(tài)監測方法研究
DOI:
CSTR:
作者:
作者單位:

常州大學(xué) 機械工程學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TH162;TG506??????

基金項目:

國家關(guān)鍵基礎研究計劃項目( 2011CB706803);常州市高端制造裝備智能化技術(shù)重點(diǎn)實(shí)驗室(CM20183004)


Research on Monitoring Method of Wear State of Micro-milling Tool
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為提高金屬微銑削過(guò)程中刀具磨損狀態(tài)在線(xiàn)監測系統的預測效率與精度,提出一種基于線(xiàn)性判別分析與改進(jìn)型BP神經(jīng)網(wǎng)絡(luò )模型識別刀具磨損的方法。該方法通過(guò)傳感器與數據采集系統采集微銑削過(guò)程振動(dòng)信號,提取其時(shí)域和頻域特征并通過(guò)線(xiàn)性判別方法進(jìn)行降維約簡(jiǎn)。將降維后的特征輸入經(jīng)灰狼優(yōu)化改進(jìn)的BP神經(jīng)網(wǎng)絡(luò )模型,從而實(shí)現微銑刀磨損狀態(tài)特征的分類(lèi)。結果表明,提出的微銑刀在線(xiàn)監測方法能夠準確識別微銑刀的各種磨損狀態(tài)。此外,和其它分類(lèi)算法相比,提出的基于灰狼優(yōu)化算法的BP神經(jīng)網(wǎng)絡(luò )模型在分類(lèi)精度和計算效率方面具有綜合優(yōu)勢。這對實(shí)際生產(chǎn)過(guò)程中微銑刀的磨損狀態(tài)監測具有非常重要的實(shí)際意義。

    Abstract:

    In order to improve the prediction efficiency and accuracy of the online tool wear monitoring system in the metal micro-milling process, a method based on linear discriminant analysis and improved BP neural network model to identify tool wear is proposed. This method collects the vibration signal of the micro-milling process through a sensor and a data acquisition system, extracts its time-domain and frequency-domain features, and performs dimensionality reduction through a linear discrimination method. The dimensionality-reduced features are input into the BP neural network model optimized and improved by the gray wolf, so as to realize the classification of the characteristics of the wear state of the micro-milling cutter. The results show that the proposed online monitoring method for micro-milling cutters can accurately identify various wear states of micro-milling cutters. In addition, compared with other classification algorithms, the proposed BP neural network model based on gray wolf optimization algorithm has comprehensive advantages in classification accuracy and computational efficiency. This has very important practical significance for monitoring the wear status of micro-milling cutters in the actual production process.

    參考文獻
    相似文獻
    引證文獻
引用本文

潘春龍,王二化,張屹.微銑削刀具磨損狀態(tài)監測方法研究計算機測量與控制[J].,2021,29(11):22-28.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2021-04-13
  • 最后修改日期:2021-05-12
  • 錄用日期:2021-05-13
  • 在線(xiàn)發(fā)布日期: 2021-11-22
  • 出版日期:
文章二維碼
怀集县| 长白| 大姚县| 土默特左旗| 遂川县| 荥阳市| 长海县| 古丈县| 巨鹿县| 昌都县| 金沙县| 德惠市| 邢台市| 龙山县| 绥芬河市| 汾西县| 罗田县| 吉木萨尔县| 九龙县| 阿鲁科尔沁旗| 东光县| 德钦县| 轮台县| 五常市| 夏河县| 奎屯市| 肥乡县| 贞丰县| 金山区| 金坛市| 额敏县| 嘉善县| 琼中| 乡宁县| 多伦县| 铜梁县| 县级市| 朝阳市| 台北市| 景德镇市| 黔南|