国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于深度學(xué)習的盲道障礙物檢測算法研究
DOI:
CSTR:
作者:
作者單位:

西安建筑科技大學(xué) 信息與控制工程學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP391

基金項目:

國家自然科學(xué)基金(51678470)


Research on Obstacle Detection Algorithm of Blind Path based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對盲人出行時(shí)盲道場(chǎng)景復雜度高,已有目標檢測算法對遠距離障礙物以及條形障礙物特征提取困難,造成漏檢等問(wèn)題提出改進(jìn)。針對條形障礙物檢測增加非對稱(chēng)卷積模塊(ACB),強化網(wǎng)絡(luò )在垂直與水平方向的特征提取;構建混合池化模塊,將條形池化引入網(wǎng)絡(luò )與金字塔池化融合為混合池化模塊(MPM),增強網(wǎng)絡(luò )對長(cháng)條形與非長(cháng)條形障礙物檢測效果;網(wǎng)絡(luò )末端改變特征融合方式,低級特征與高級特征相乘形式以加強復雜場(chǎng)景下盲道障礙物識別。實(shí)驗結果表明,在盲道障礙物數據集上,改進(jìn)算法對比YOLO V4在多個(gè)評價(jià)指標上都有提升;實(shí)際場(chǎng)景測試中對遠距離障礙物以及條形障礙物檢測的檢測精度提升明顯。

    Abstract:

    In view of the high complexity of blind road scene when blind people travel, the existing target detection algorithm is difficult to extract the features of long-distance obstacles and strip obstacles, resulting in missed detection and other problems. Asymmetric convolution module (ACB) was added for bar obstacle detection to strengthen feature extraction in vertical and horizontal directions. A hybrid pooling module was constructed. Strip pooling was introduced into the network and pyramidal pooling was integrated into a hybrid pooling module (MPM) to enhance the detection effect of the network on the long and non-long obstacles. At the end of the network, the fusion mode of features is changed, and the multiplication form of low-level features and advanced features is used to strengthen blind obstacle recognition in complex scenes. The experimental results show that, compared with YOLO V4, the improved algorithm has improved in multiple evaluation indexes in the blind obstacle data set. In the actual scene test, the detection accuracy of long-distance obstacles and strip obstacles is improved obviously.

    參考文獻
    相似文獻
    引證文獻
引用本文

段中興,王劍,丁青輝,溫倩.基于深度學(xué)習的盲道障礙物檢測算法研究計算機測量與控制[J].,2021,29(12):27-32.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2021-04-07
  • 最后修改日期:2021-05-14
  • 錄用日期:2021-05-20
  • 在線(xiàn)發(fā)布日期: 2021-12-24
  • 出版日期:
文章二維碼
区。| 肇州县| 竹溪县| 新泰市| 奉化市| 江安县| 内江市| 彝良县| 尼勒克县| 温宿县| 策勒县| 巴中市| 什邡市| 界首市| 黔西| 咸丰县| 栾城县| 富民县| 搜索| 深水埗区| 夏津县| 都江堰市| 潼关县| 莫力| 遵义市| 峡江县| 泸溪县| 肃宁县| 宁陕县| 武宁县| 辽宁省| 平遥县| 甘孜县| 读书| 原平市| 北安市| 兴化市| 平山县| 永胜县| 海盐县| 资源县|