国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

DSCE-GEP算法在PM2.5濃度預測中的應用
DOI:
CSTR:
作者:
作者單位:

西安建筑科技大學(xué)

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家自然科學(xué)基金項目(面上項目,重點(diǎn)項目,重大項目)


Study on the Prediction of PM2.5 Concentration by Double System Co-evolutionary Gene Expression Programming
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    霧霾防治是目前空氣質(zhì)量保護問(wèn)題研究的熱點(diǎn),PM2.5濃度預測是霧霾防治的關(guān)鍵之一。文章采用一種雙系統協(xié)同進(jìn)化的基因表達式編程算法(DSCE-GEP)進(jìn)行PM2.5濃度預測,該算法在GEP算法中引入人工干預操作來(lái)提高算法進(jìn)化速度以及解的質(zhì)量。DSCE-GEP算法是對人類(lèi)進(jìn)化的模擬,不僅具有強大的模型學(xué)習能力,而且能得到模型的顯式函數表達式。文中以西安地區逐日PM2.5濃度預測為例,將DSCE-GEP算法與傳統基因表達式編程算法(GEP)、文獻中分類(lèi)回歸樹(shù)和極限學(xué)習機組合模型(CART-EELM)以及卷積神經(jīng)網(wǎng)絡(luò )和長(cháng)短期記憶神經(jīng)網(wǎng)絡(luò )組合模型(CNN-LSTM)進(jìn)行了對比實(shí)驗。實(shí)驗結果表明,DSCE-GEP算法擬合度更高,是一種具有競爭力的智能預測算法。

    Abstract:

    Haze prevention and control is a hot topic of air quality protection research at present, and PM2.5 concentration prediction is one of the keys to haze prevention and control. In this paper, a dual system co-evolution gene expression programming algorithm (DSCE-GEP) was used to predict PM2.5 concentration. In this algorithm, manual intervention was introduced into the GEP algorithm to improve the algorithm evolution speed and the quality of the solution. DSCE-GEP algorithm is a simulation of human evolution. It not only has strong ability of model learning, but also can get explicit function expression of the model. In this paper, the daily PM2.5 concentration prediction in Xi 'an area is taken as an example, and the DSCE-GEP algorithm is compared with the traditional gene expression programming algorithm (GEP), the classification regression tree and extreme learning machine combination model (CART-EELM) in literature, and the convolutional neural network and long and short-term memory neural network combination model (CNN-LSTM). The experimental results show that the DSCE-GEP algorithm has higher fitting degree and is a competitive intelligent prediction algorithm.

    參考文獻
    相似文獻
    引證文獻
引用本文

王超學(xué),賈曉莉. DSCE-GEP算法在PM2.5濃度預測中的應用計算機測量與控制[J].,2021,29(10):71-76.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2021-03-22
  • 最后修改日期:2021-04-22
  • 錄用日期:2021-04-23
  • 在線(xiàn)發(fā)布日期: 2021-11-11
  • 出版日期:
文章二維碼
武宁县| 庆元县| 金门县| 宜州市| 霍山县| 旬阳县| 内乡县| 渭源县| 历史| 文成县| 肇州县| 汾西县| 贡山| 商水县| 新源县| 大厂| 兴安盟| 福泉市| 浠水县| 凉山| 洛浦县| 涞水县| 黄浦区| 苍溪县| 宜良县| 深圳市| 清远市| 门头沟区| 长沙县| 庆阳市| 荃湾区| 宿迁市| 离岛区| 乳源| 沙河市| 临漳县| 原平市| 遂宁市| 娱乐| 上饶县| 茶陵县|