国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于物聯(lián)網(wǎng)的分揀機器人故障檢測系統設計
DOI:
CSTR:
作者:
作者單位:

新疆工程學(xué)院 信息工程學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:


Design of a Sorting Robot Fault Detection System Based on the IoT
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    目前研究的分揀機器人故障檢測系統檢測準確性較低,導致檢測結果誤差較大、實(shí)時(shí)性較差。為此,基于物聯(lián)網(wǎng)設計一種新的分揀機器人故障檢測系統,并分別對系統的硬件和軟件進(jìn)行設計。選用滑輪式機器人載體設定分揀機器人,硬件部分采用Zigbee壓力傳感器完成機器人故障信息采集,利用XBEE模塊負責數據之間的傳輸,協(xié)調分揀中控機接收各個(gè)傳感器采集的信息,通過(guò)STMP3550芯片將采集到的發(fā)送到上位機中,實(shí)現控制器設計。通過(guò)信息標定、信息采集、特征提取、故障識別實(shí)現軟件工作流程,應用非極大值最大類(lèi)間方差法來(lái)篩選出最優(yōu)的高低閾值解,得到連續但含有假邊緣的故障信息圖像邊緣。將提取到的圖像特征向量映射到類(lèi)型空間之中,獲得識別分類(lèi)結果,確定故障原因,完成故障識別。實(shí)驗結果表明,基于物聯(lián)網(wǎng)的分揀機器人故障檢測系統能夠有效提高檢測準確性,加強檢測結果的實(shí)時(shí)性。

    Abstract:

    The current research on the sorting robot fault detection system has low detection accuracy, resulting in large errors in detection results and poor real-time performance. To this end, a new sorting robot fault detection system is designed based on the Internet of Things, and the hardware and software of the system are designed separately. Select the pulley type robot carrier to set the sorting robot, the hardware part uses Zigbee pressure sensor to complete the robot fault information collection, the XBEE module is used for data transmission, and the sorting central control machine is coordinated to receive the information collected by each sensor. The collected data is sent to the upper computer to realize the controller design. The software workflow is realized through information calibration, information collection, feature extraction, and fault identification. The non-maximum maximum between-class variance method is used to screen out the optimal high and low threshold solutions, and the continuous but false edges of the fault information image edges are obtained. Map the extracted image feature vector to the type space, obtain the recognition classification result, determine the cause of the fault, and complete the fault recognition. The experimental results show that the sorting robot fault detection system based on the Internet of Things can effectively improve the detection accuracy and strengthen the real-time performance of the detection results.

    參考文獻
    相似文獻
    引證文獻
引用本文

代康,謝凱.基于物聯(lián)網(wǎng)的分揀機器人故障檢測系統設計計算機測量與控制[J].,2021,29(8):37-41.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2021-03-17
  • 最后修改日期:2021-05-13
  • 錄用日期:2021-05-20
  • 在線(xiàn)發(fā)布日期: 2021-08-19
  • 出版日期:
文章二維碼
图木舒克市| 治多县| 汉中市| 土默特左旗| 和田市| 崇礼县| 海原县| 禄劝| 阜新| 岱山县| 太和县| 丹巴县| 浪卡子县| 潮安县| 巴彦县| 五常市| 山丹县| 磐安县| 栾川县| 绥江县| 平度市| 莫力| 景洪市| 麦盖提县| 白山市| 临邑县| 五河县| 砚山县| 辽宁省| 峨山| 公安县| 沁阳市| 电白县| 邯郸县| 二连浩特市| 米脂县| 林州市| 石柱| 天峨县| 车致| 自贡市|